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The Theory of Pure Numbers.
     
The theory of pure numbers includes

       1. Definition of pure numbers, and examination of their properties: 
             1.1 positive integers and 
             1.2 complex  numbers
                   1.21 Sums
                   1.22 Products
                   1.23 Powers

       2. Binary relations between pure numbers

             2.1 Sameness Relations (in various respects) e.g.,
                   2.11 Identity with respect to having all of a certain set of essential properties. 
                   2.12 Integral Equality = same in reducibility to the same positive integer
                   2.13 Proportional Equality = sameness of ratios

                          2.131 Among ratios If  ((x × y) = (z × w)) then (x:z = w:y)

                                    [E.g., if  3×20 = 4×15 then (3:4 = 15:20)]   or 3/4>15/20

            2.2  Difference Relation (in various respects) 
                   2.21 Greater, Less among positive integers & compounds of them 
                           If a & b are PI’s, then a>b iff  (Ex)(PIx & x + b = a)                                

                  2.23 Greater, Less, among proportional ratios: If a×d > b×c then a:b > c:d 

.       3. Functions and Polyadic relations among 3-tuples and n-tuples.
                  3.31 Amounts of Difference Function between natural numbers:
                           “D(4,7,3)” for “The difference between 4 and 7 = 3" 

                           Amounts of difference: E.g., D(4,7) = 3 or |7-4|=|4-7|=3 (no Negative nmbers),

                  3.32 Amount of difference in proportion: D((x:y),(z:w)) = (D((x×w),(z×y)):(y×w))

                                                         E.g., D((3:4),(15:21)) = (D((3×21),(4×15)):(4×21)) =3:84
                  3.33 Proximation function   

                          2.132  Relative Proximateness E.g.,  (14:10)  =  2:12
Prox

                                   for  14:10 × 14:10 =   200 × 100 ,   196:100 =  200:100Prox Prox

         4. Sequences  An ordered set of numbers, each successive member being determined by       
               some operation on preceding members.
             All Sequences a) have a first member, or a first ordered n-tuple of numbers.
                                     b) each successive member is determined by some fixed operation
                                         on one or more preceding members.
             .Kinds of sequences: a) Arithmetic. The function is additive. The initial member is a , 
                                  The value of each subsequent member is a function that adds something        
                                  to some function of preceding members by a general formula.
                                          Initial member = 1, successor  member a  = (a  +1) :    1,2,3,4,...n n-1

                                          Initial member = 2, successor  member a  = (a  +2) :    2,4,6,8,... n n-1

                                               b) Geometric. Initial member is a, successive members are formed    
                                  by  multiplying one or more specified predecessors, by some formula:
                                         Initial member = 3, Successor  member a  = (a × 3) :   3, 9, 27, 81,...n n+1

                                         Initial members = 1,2, Successor  member a  = (a ×a ) : 1, 2, 3,5,8,...  n n-1 n-2

Metric fractions, zero, negative integers, irrational  roots,  imaginary and complex numbers are
not “pure numbers”           
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 Richard Courant and Herbert Robbins, What is Mathematics, Oxford University Press, 1941, p 11

Chapter 1 - INTRODUCTION

Let us distinguish 1) mathematics, 2) axiomatic theories of mathematics or (meta
mathematical theories), and 3) philosophies of mathematics.  Mathematics is what it is regardless
of  theories or philosophical ideas about it’s nature. This book presents axiomatic theory about a
portion of mathematics - the natural numbers. There are alternative theories. Different theories will
be more or less compatible with various philosophical ideas about mathematics.

1.  Mathematics itself is what mathematics teachers teach, what millions of students learn
some of and what mathematicians, qua mathematicians are able to do.  Millions of school children
know that mathematics includes  adding,  multiplying, subtracting and dividing positive and negative
numbers and fractions, finding roots and powers of numbers, and solving problems involving
trigonometric functions,  logarithms and calculus. Beyond this basic core,  mathematics extends into
many fields of application,  higher mathematics and emerging areas on the borderline . Distinctions
are often made between  pure and applied mathematics. Although a generalized distinction of  this
sort is problematic, this distinction is important for a theory of natural numbers.
           2. The Natural Numbers, or positive integers, consist only of the numbers 1, 2, 3, 4, ..etc.,
and integers that can be denoted in arabic notation by 10, 11, 12,..., 100, 101,...etc.. Negative
numbers and zero are not natural numbers, though the symbol used for “zero”, namely ‘0’,  occurs
prominently with a different meaning, in arabic notation. 

3. An axiomatic theory about a field of mathematics assumes the pre-existence of the
mathematics of  that field and its established concepts, principles, equations, algorithms, rules, etc.
The theory is intended to integrate these results and show how they can all be derived logically from
a set of relatively simple clear concepts, axioms, postulates and rules. Such theories are sometimes

called “foundations of  mathematics” and sometimes “metamathematics”; in either case they  are
about a pre-established field of mathematical concepts and its results. 
            4. A theory of natural numbers is about the field of mathematics that covers only operations,
properties and relations of natural numbers. At first sight such a theory would appear to leave out
vast areas of  mathematics in which the concepts of  zero, negative numbers, and many other kinds
of numbers (including infinite numbers) that figure prominently in higher mathematics.  The truth
of  this view is just what we want to investigate. Some mathematicians have said,

    “While the Greeks chose the geometrical concepts of point and line as the basis of their
mathematics, it has become the modern guiding principle that all mathematical statements should
be reducible ultimately to statements about natural numbers, 1, 2, 3, ... .” 1

To what extent can this this statement be proved? How far can we go and how do we get there, if our
investigations are restricted to natural numbers? 

To say a given mathematical statement is reducible to a statement about natural numbers is
to say that the given mathematical statement (which may appear to be about zero or negative, or
complex, or infinite numbers)  is provably equivalent or synonymous to another statement that uses
only the definitions, axioms, postulates and rules of the theory and talks only about operations on,
or properties and relationships of entities that are natural numbers.  Obviously this is a tall order.
             5. The adequacy of a theory  for a given field of  mathematics is measured by the degree to
which the theory is 1) complete  - in the sense that no significant results in that field are left out of
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account, i.e., all relevant valid statements of established mathematica follow by clear rules of
derivation from its definitions and postulates; 2) consistent in the sense that it does not yield
inconsistent results, and 3) rigorous, i.e., its definitions, rules of derivation, etc.,  have unambiguous,
publicly accessible criteria so results will be the same for all who use them.  If a theory is also simple
and compatible with both ordinary language usage and sophisticated mathematics, this feature may
stand in its favor, although it is neither a necessary not a sufficient condition.
            6. Philosophies of Mathematics are something else again.  Philosophy is concerned with
general theories of knowledge (epistemology and logic) general theories of value (ethics and
aesthetics) and general theories of reality (metaphysics and ontology).  Mathematics is just one
branch of knowledge, but it is one in which logic plays a central role and ontological questions about
numbers and reality are very much alive. One may have strong philosophiical views about
mathematics, without having any theory adequate to back them up.  

7. In the twentieth century there were three major theories of mathematics. Each necessarily
included a  theory of natural numbers. a) The Frege-Russell theory  sought to derive mathematics
from a logic of classes. b) The formalist theory of Hilbert which viewed mathematical statements
as results of applying certain rules for manipulating mathematical signs.  c) The intuitionist theory
of  Heyting and Brouwer which asserted that mathematics is based on intuitive ideas and

constructions built up from those ideas.  
8. These theories were guided by different philosophical ideas.The Frege Russell theory

appealed to the philosophical idea that mathematics could be derived from abstract concepts and
rules of logic which contains the most universal laws of the universe. . The intuitionists appealed to
the philosophical idea that mathematics is an activity of the human intellect, and that its foundations
must consist of  intuitively clear ideas and methods for constructing new ideas from old. The
formalists, impressed with the rigor of  formal mathematical derivations, sought to avoid
philosophical stands about abstract meanings of mathematical symbols or the place of mathematical
entities in ultimate reality, by concentrating on the rules for moving from one symbol to another..
.. 
          9.  Each of these  theories had defects with respect to its adequacy. The intuitionists theories
used a more restricted logic than Russell, Frege and Hilbert and were unable to cover certain areas

in  “classical mathematics” involving  infinite sets. Thus they failed the completeness requirement.
The Russell-Frege theory conains anomalies with repect to ordinary language, and led to various
logical paradoxes which had to be neutralized by ad hoc devices in order to avoid inconsistency.But
both Hilbert and Frege-Russell claimed to cover all of  “classical mathematics” including theories
of transfinite numbers. However, Gödel proved that their system of logic could only be complete
with respect to mathematics if it was inconsistent, and could only be consistent if incomplete.
        10.  Despite the absence of a completely adequate theory of mathematics, each of these theories
made important contributions. The concepts of an axiomatic system and rigorous proofs was greatly
sharpened by both the Frege-Russell theory and Hilbert’s investigations of proof theory. The
intuitionists kept alive the puzzling question of  how human mathematicians can prove  statements
about non-denumerable infinite sets and numbers that even their author, Cantor, described as
“incomprehensible to the human understanding” and knowable only to the Absolute. 
       11. In the following pages we will begin to develop an axiomatic theory of  natural numbers and
see how far we can go with the principle that ”all mathematical statements should be reducible
ultimately to statements about natural numbers.” 
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Chapter 2 - POSITIVE INTEGERS AND NUMBERS IN ELEMENTARY ARITHMETIC

      Standard alphabets in the western world do not consider parentheses, ‘(‘ and ‘)’,  as letters in the
alphabet. Nevertheless, parenthesis signs occur widely in written language, and are universally

understood to represent devices which signify groupings of  words and clauses. Ordinary language
has many other devices  (commas, periods, paragraphing, etc.) for grouping. In logic and
mathematics  the  identification of  differences  in meaning due to differences in groupings is
absolutely essential and all structures of  groupings are expressible with parentheses. For example,

‘((2+3)×4)’ has a different meaning than ‘(2+(3×4))’ though they differ only in grouping expressed
by the different positions of the parentheses. The first expression = 20, the other =24.
      The number signs ‘1’, ‘2’, etc., are also not considered as letters in the alphabet, though they are
used just as much as words made of alphabet letters to convey information. In the theory of
arithmetic below we treat the concept of grouping as the foundation of mathematics. The  signs for
numbers will be defined in terms of  certain purely parenthetical expressions and construed  as

meaningful words.

      2.1 The number 1.

We will use a matching pair of parentheses , ‘( )’, to represent the abstract concept of a single

distinct entity.  These two marks (without the quotes) are to be viewed as a linguistic expression,
useful to convey the meaning we  associate with it. This meaning is simply the abstract concept of
a single entity or individual thing, or  unit. The abstract concept of an entity - which is the meaning
we assign to ‘( )’ is similarly the abstract concept of some thing, event, idea, etc., whether simple or

complex, with boundaries that mark it off from what is other than it.  It is like the abstract concept

of  a Gestalt figure distinguished from its background. 
Single quote-marks around an expression composed of a pair of matching parentheses

signifies, stands for or denotes just those marks  (not their meaning) in the order they occur between

the single quote-marks in ‘( )’.  These two parentheses enclose a space, set off from other linguistic

entities or marks to the right or left the pair of parentheses, and as such each can be viewed as a

single whole linguistic entity or word. Thus the sign ‘( )’ is ideographic; it displays what it means.

Without quote-marks ‘( )’ means “an individual entity” or “unit”. The concept of the number one,

or 1, can be conveyed by  the sign, ‘(( ))’.  In this book the sign ‘(( ))’ means the number one, the

idea of. a group of just one individual entity. Thus we define “one”, or the number one, or “1” as:

              D1.  ‘1’ Syn ‘(( ))’

and we note that the sign ‘(( ))’ displays what that sign means: it is group with just one entity in it.

      2.2 Positive Integer

        We use the sign  ‘(( )( ))’ to mean the number two; the sign, ‘(( )( )( ))’ to mean the number

three, and so on for all positive integers.  The idea of a positive integer is the idea of a group of
single entities. Each  unit  in  the  group  is  different  and  distinct from  all others  in the group. The
signs, ‘(( )( ))’ and ‘(( )( )( ))’ not only mean the ideas of 1) a group with just two entities in it and

2) a group with just three entities in it; these signs display what they mean. The meanings of these
two signs each apply to the actual linguistic signs which convey that meaning. The idea of “two”
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 The steps in the following proofs presuppose and omit the following logical steps (1) each step is2

an implicit truth-assertion; e.g., ‘(o) is a PI’ is an implicit assertion that “ ‘(o)’ is a positive integer” is true.
(2) that the inference from Pis true and Qis true, to (P&Q) is true is logically valid, and (3) that the
inference from ‘P is true’ to ‘It is true that (P or Q)’ is valid. [See  A-LOGIC, T8-703d, Ti7-783 etc]

applies to ‘(( )( ))’ because each occurrence of ‘( )’ means ‘a unit’, so the word “(( )( ))” means “two
units” and is itself an instance of what it means. 

            The clause “... and so on for all positive integers” is made precise in the following generative
definition of the predicate “â  is a positive integer”, which we abbreviate as ‘PIâ’. However, to
distinguish positive integers more clearly from other components of  a grouping structure from here
on we will use ‘o’ to abbreviate occurrences of ‘( )’ which occur only in expressions of positive
integers, i.e., any pair of left & right parentheses that has no symbols in between them. So ‘(( )( ))’
becomes abbreviated as ‘(oo)’, ‘(()()())’ become ‘(ooo’)etc.. Thus ‘positive integer’ (abbr. ‘PI’) is

defined as:

    D2. [â is a PI] Syn [(â is (o)   v   ((ã) is a PI & (ä) is a PI & âis(ãä)))] 

In ordinary English D2 says: to say that an entity â is a positive integer means either that â is the

same as (o),  or that some entity (ã) is a positive integer and some entity (ä) is a positive integer

and â is the same as the result of enclosing the contents of (ã) and (ä) in one  pair of parentheses.

From  this definition the following rule for constructing additional positive integers, follows:

           R1.  If  [(ã)] is a PI & [(ä)] is a PI, then & [(ãä)] is a PI.        

Using definition D2, and 
          
    Axiom 1 . ((o) is a PI )

we prove that (o),  (oo),  (ooo), and (oooo) are positive integers as follows:.  

1)   (o) is a PI                                   [Axiom 1] 
2)   (o) is a PI                                   [Axiom 1]2

           3)   (o) is a PI & (o) is a PI               [Adj, 1),2)]
           4)   (oo) is a PI                                 [3), Df, PI, Clause(ii)]
           5)   (o) is a PI &  (oo) is a PI            [Adj, 2),4)]
           6)   (ooo) is a PI                               [5), Df,PI, Clause(ii)]
           7)   (o) is a PI & (ooo) is a PI           [Adj, 2),6)] 
           8)   (oooo) is a PI                             [7), Df,PI, Clause(ii)]
           9)   (oo) is a PI &  (ooo) is a PI        [Adj, 4),8)]
         10)   (ooooo) is a PI                           [9),Df,PI, Clause(ii)]

By similar steps any sequence of matched parentheses in which every left parenthesis is
immediately followed by a right parenthesis except for the outermost pair which encloses the whole

sequence, is an expression that stands for and displays a positive integer.   Nor need they all be built
up using ‘(o)’. Since (oo) and (ooo) are positive integers [step 4 and step 6],  (ooooo) is a positive
integer by clause (ii) of definition D2.  D2 permits the assertion that no matter how large a given
positive integer is, there will be one and only one purely parenthetical expression (“word”), that can
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have that positive integer as its meaning. Written in the present type font (12 characterer per inch),
the “word” for 1,000 (one thousand) would be 2.8 meters long; the word for 1,000,000,000 ()one
billion) would be 2,857 kilometers (over 1775 miles). There is no limit to the length of the sign  a
possible particular positive integer might have. The concept of positive integer is the concept which
applies to any one of them  -- the concept expressed in the first sentence of this paragraph. To
disinguish particular positive intgers from others, we need to find short numerals that will name
them.

      2.22  Naming Positive Integers, Step 1

Obviously we need shorter expressions to do the work of arithmetic and more signs to
distinguish each positive integer from others. We can abbreviate  the ideographic terms for positive
integers with shorter symbols. These are called numerals.We want a system of numeral-construction
that will assign one and only one numeral to each distinct positive integer. Numerals stand for, or
denote, positive integers. They are used to talk about positive integers.  But they are not positive
integers themselves and they do not display positive integers the way the parenthetical expressions
above do. Nevertheless, using numerals in an arabic system of number notation we can formulate
rules such that each distinct numeral, names one and only one distinct positive integer (parentheses
grouping that displays it) that we may wish to talk about.  

We start with a set of elementary numerals. We choose a small number of positive integers
and name each one of them by a distinct single symbol as its numeral. Each abbreviation asserts that
the new symbol has the same meaning (is Synononymous by definition to) as the abbreviated

symbol:

       Df ‘1’:             ‘1’ Syn  ‘[o]’df

       Df ‘2’:             ‘2’ Syn  ‘[oo]’df

       Df ‘3’:             ‘3’ Syn  ‘[ooo]’df

       Df ‘4’:             ‘4’ Syn  ‘[oooo]’df

       Df ‘5’:             ‘5’ Syn  ‘[ooooo]’df

       Df ‘6’:             ‘6’ Syn  ‘[oooooo]’df

       Df ‘7’:             ‘7’ Syn  ‘[ooooooo]’   df

       Df ‘8’:             ‘8’ Syn  ‘[oooooooo]’df

       Df ‘9’:             ‘9’ Syn  ‘[ooooooooo]’df     

We could go on, inventing additional symbols as numerals for ‘(oooooooooo]’, ‘(ooooooooooo]’
etc., but the definitions of ‘1' to ‘9' are sufficient for our immediate purpose.  Each elementary single,

numeral is qua sign, called a digit. These abbreviations, creating new digits, could be continued as
far as we wish. . 

Step 2, in naming positive integers consists in selecting some system of notation whereby
large positive integers can be named by two or more digits arranged in sequence. This we will do in
Chapter 3.  But before proceeding to Step 2, we  will consider the concept of  a natural number and
some basic operations, properties and relations of natural numbers, as they relate to the nine positive
integers  named above.

      2.3  Natural Numbers; Operations, Properties and Relations
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 Positive Integers are natural numbers. But we define ‘natural number’ more broadly to
include also expressions that convey ideas of sums, products and powers of positive integers. Thus
expressions like  ‘(3+2)’, ‘(3×2)’ and ‘3 ’ will be called natural numbers, as well as more extended2

expressions (e.g., ‘(3+2+4)’, ‘(3×2×4)’, ‘(3 ) ’  and mixed expressions (e.g., ‘((3+6 )×(2+4)) ’ ).2 4 2 5+6 

What all natural numbers have in common is that each one is equal (in a sense defined below) to just
one positive integer.

2.31  Definition of  “is a natural number”

          Natural numbers in this enlarged sense  are structures of groupings of individual entities.
These groupings can be displayed using only  left and right parentheses. The simplest components
are positive integers. They are one kind of grouping.  But.we define ‘Natural number‘ (abbreviated
‘Nn’)  to include terms with other specific kinds of parenthetical groupings as well: 

Df;’Nn’: ‘â is a Nn’ Syn ‘(â is a PI)                                                              (clause (i))
                                        v (ã is a Nn  &  ä is a Nn  &  â is [(ãä)] )’         (clause (ii))
                                        v (ä is a PI & â is the result of replacing                

                                              each unit ‘o’ in  ä with a Nn)                            (clause (iii))

From this definition we can derive the following set of rules for constructing natural numbers:

         R2. If  â is a PI  then â is a Nn 

         R3. If  â is a Nn &  ã is a Nn, then [(âã)] is a Nn               

         R4. If  ä is a PI & ä is a component of some Nn & â is the result of 

                    replacing each unit ‘o’ in ä with a Nn),  then â is a Nn

All natural numbers can be displayed or exemplified in grouping structures, constructible by these
rules, in which only left and right parentheses occur in accordance with the definition of  Nn above.

2.32  Fundamental Operations: Addition, Multiplication, Exponentiation

Operations. The operations of addition, multiplication and exponentiation are precisely and
uniquely defined in terms of structures of groupings.

              Addition. Within the parenthetiical grouping expression that displays a natural number, an
occurrence of  ‘))((‘ is always interpretable as ‘+’. For example.

   ‘(1+1)’ Syn  ‘((o)(o))’,    since ‘1’ means ‘(o)’ and ‘)(‘ may be interpreted as ‘+’ or addition,  

   ‘(2+3)’ Syn  ‘((oo)(ooo))’,  since, ‘2’ means (oo), ‘3’ means (ooo) and ‘)(‘ neans ‘+’. 

   ‘(1+2+3)’ Syn     ((o)(oo)(ooo)), since,  ...etc 

   ‘((1+2)+3) Syn (((o)(oo))(ooo)) since, ...etc.

Multiplication. If â is a natural number and ã is a natural number then the result of
replacing all occurrences of o in â by occurrences of  ã may be interpreted as  [(â × ã)] , i.e., as
“â times ã” or  “the multiplication of  ã by â”.. For example,

‘(2 × 1)’ Syn ‘((o)(o))’ since ‘2’ means ‘(oo)’ and ‘((o)(o))’ is the result of replacing each o in 2   
                                  by ‘(o)’ i.e., by 1.  
‘(2 × 3)’ Syn ‘((ooo)(ooo))’ since ‘2’ means ‘(oo)’ and  ‘3’ means ‘(ooo)’ and  ‘((ooo)(ooo))’       
                                 is the result of replacing each o in 2 by 3, i.e., by ‘(ooo)’.   
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‘(3×2)’ Syn ‘((oo)(oo)(oo))’ since ‘3’ means ‘(ooo)’ and‘2’ means ‘(oo)’ and  ‘((oo)(oo)(oo))’      
                                is the result of replacing each o in 3 by 2, i.e., by ‘(oo)’

 Note that ((ooo)(ooo))’ i.e., ‘(2 × 3)’, and ‘((oo)(oo)(oo))’ i.e.,‘(3×2)’ have different
grouping structures.
‘(3× (2 × 1))’ Syn  ‘(((o)(o))((o)(o))((o)(o)))’ since, etc..

           Exponentiation. If  â is a positive integer and  ã is the result of replacing all occurrences
of o in â  by â then ã is â .   If  â is the initial positive integer and  ã is the result of replacing2.

all occurrences of o in the preceding natural number byâ n-1 times, then ã is â . For examplen.

‘3 ’ Syn ‘((ooo)(ooo)(ooo))’,     since  ‘((ooo)(ooo)(ooo))’ is the result of 2

                                                         Step 1. Starting with ‘(ooo)’
                                                         Step 2. Replacing all occurrences of ‘o’ in Step 1 
                                                                     by ‘(ooo)’ to get ‘((ooo)(ooo)(ooo))’,
‘2 ’ Syn ‘(((oo)(oo))((oo)(oo)))’ since  ‘(((oo)(oo))((oo)(oo)))’ is the result of 3

                                                         Step 1. Starting with ‘(oo)’
                                                         Step 2. Replacing all occurrences of ‘o’ in Step 1 
                                                                     by ‘(oo)’ to get ‘((oo)(oo))’
                                                         Step 3. Replacing all occurrences of ‘o’ in ‘((oo)(oo))’            
                                                                by ‘(oo)’ to get. ‘(((oo)(oo))((oo)(oo)))’ .

The construction of  natural numbers that are sums, products or powers is different from the
construction of positive integers.. To construct a new positive integer one adds occurrences of units,
i.e, ( ), to other ( )’s within a paair of parentheses, whereas the definition of  ‘Natural number’ always
adds second- or higher-level groupings within a  pair of parentheses,  or  replaces ‘( )’ (first-level

parentheses) with second or higher-level  groupings in a Natural number.   
Expressions like ‘o’ or ‘oo’ not in paretheses, and ‘(o(o))’ or ‘((ooo)o)’  - i.e., expressions

in which o lies in a pair of parentheses with anything other than ‘o’s, are not well-formed number-
expressions according to the rules and definitions of PI and Nn.In short, there is no way to get (o(x)))

or ((x)oooo) etc., where ‘(x)’ is a Nn.

        |= (1+1) is a Nn. 

        Proof: 1)  (o) is a PI                                            [Df ‘PI’, Clause(i)] 
        2)  (o) is a Nn                                           [Df ‘Nn’, Clause(i)]
        3)  ((o) is a Nn & (o) is a Nn)                   [2), IDEM, SYN-SUB]
        4)  ((o)(o)) is a Nn                                    [3), Rule 3, MP]
        5) (1+1) is a Nn                                        [4), Df’‘1’, Df ‘+’]

Similarly,     6) From, ‘(o)’ is a Nn & ‘(oo)’ is a Nn  it follows that 
                        ‘((o)(oo))’ is a Nn, abbreviatable as (!+2)
           and   7) From   ‘(ooo)’ is a Nn &  ‘(oo)’ is a Nn it follows that
                        ‘((ooo)(oo))’ is a Nn   abbreviatable as ‘(3+2)’
           and   8) From ‘(oo)’ is a Nn, it follows by rules that 
                        ‘((oo)(oo))’ is a Nn and that this is
                        abbreviatable either as ‘(2 +2)’, ‘(2×2)’ or ‘2  ’.   2

           and   9) ‘((oooo)(((oo)(oo))((oo)(oo))((oo)(oo)))
                        is a natural number abbreviatable as (4 + (3 × 2 )) or as (4 + ((2+2)+(2+2)+(2+2))2
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2.33  Intrinsic Properties of Natural Numbers

         Given a single natural number, certain predicates may truthfully apply to it without relating it
to any other natural number.  Other predicates assert assert a relationship between a given natural
number and one or more other natural numbers, or between one kind of natural number and another
kind. In the first case, we shall say that the predicate describes an intrinsic property of a natural
number. In all other cases, we shall say it describes relations between one or more natural numbers
and other things. Thus for example, the statements 1)-7) desribe intrinsic properties 
         1) (()()()()()) is a positive integer.
         2) ((()())(()()())) is a pure number
         3) ((()())(()()())) is a sum.
         4) ((()()())(()()())) is a product.  
         5) ((()()())(()()())) is a sum        
         6) ((()()())(()()())(()()())) is an exponential number
         7) (((())(()()))((())(()()))) is a product of sums
Monadic predicates that truthfully describe intrinsic properties, without reference to other numbers,
mostly describe what we may call grouping structures.  The distinctions involved are important, but
the statements of most interest predicate relationships between numbers. Even such simple
statements as
         8) (()()()()()()()) is an odd number
    
is implicitly a statement about relationships, It means that two is not a factor of  (()()()()()()()), i.e.,
that (()()()()()()()) is not equal to any number with the overall form (()()).  Without denying that there
are significant monadic predicate that are true or false of natural numbers as we have defined them,
we pass on to analysis of relational statements        
 

2.4 Relations Between Numbers

     
      A statement about a relation between numbers will have two or more natural numbers as subject

and a binary or polyadic predicate.  Binary statements have the form [R(n ,n )] where ‘n ,n ’ signifies1 2 1 2

that we are talking about an ordered pair of two different natural numbers, and ‘R’ represents the

predicate.  “Two plus two equals four” can be expressed precisely by  “Equals (((oo)(oo)),(oooo))”.

Complex natural numbers, like “(((oo)(o))((oo)(o)))” express terms like “2(2+1)” or “two times one
plus one”, not statements. Statements about intrinsiice properties of natural numbers, like 
          

2.33 Equality

 The basic relation in elementary arithmetic is the relation of equality among natural numbers.
What do “(a + b) = c” and “(a × b) = d” mean ? We starts off with  addition and multiplication tablec
that begin with

                                        + |  1   2   3        and        × |  1   2   3 
                                        1 |  2   3   4                      1 |  1   2   3
                                        2 |  3   4   5                      2 |  2   4   6
                                        3 |  4   5   6                      3 |  3   6   9

Each of  these two tables is a short way of  to make nine equality statements. These tell us the
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answers to which sums or products are equal to which, though they do not tell us what ‘=’ means.
We shall say two natural numbers (including sums, products and exponential products) are

equal if they both reduce to the same positive integer. Alternatively, we can say that if two natural
numbers both refer to the same number of individual units, they are equal.  By “the reduction of a
to positive integer b” we mean the result of eliminating all intermediate groupings (parentheses)
between the outermost parentheses and the units. Thus we may define ‘=’ as follows:

.Df ‘=’:  ‘â = ã’ Syn ‘(â is a Nn  &  ã is a Nn  &   ä is a PI

                                   & â reduces to ä &  ã reduces to ä)’

And the addition and multiplication tables are explained as follows:
       Addition Table             Nn    =  PI           Multipllication Table                Nn  = PI
       (1 + 1) = 2 syn         ((o)(o)) = (oo)            (1 × 1) = 1 syn                    ((o)) = (o)
       (1 + 2) = 3 syn       ((o)(oo)) = (ooo)          (1 × 2) = 2 syn                  ((oo)) = (oo)
       (1 + 3) = 4 syn     ((o)(ooo)) = (oooo)        (1 × 3) = 3 syn                ((ooo)) = (ooo)
       (2 + 1) = 3 syn       ((oo)(o)) = (ooo)          (2 × 1) = 2 syn                ((o)(o)) = (oo) 
       (2 + 2) = 4 syn     ((oo)(oo)) = (oooo)        (2 × 2) = 4 syn            ((oo)(oo)) = (oooo)
       (2 + 3) = 5 syn   ((oo)(ooo)) = (ooooo)      (2 × 3) = 6 syn        ((ooo)(ooo)) = (oooooo)
       (3 + 1) = 4 syn     ((ooo)(o)) = (oooo)        (3 × 1) = 3 syn            ((o)(o)(o)) = (ooo)
       (3 + 2) = 5 syn  ((ooo)(ooo) = (ooooo)      (3 × 2) = 6 syn       ((oo)(oo)(oo)) = (oooooo)
       (3 + 3) = 6 syn ((ooo)(ooo)) = (oooooo)   (3 × 3) = 9 syn ((ooo)(ooo)(ooo)) = (ooooooooo)

This way of defining equality works for all Natural numbers, i.e., for all sums, products and
exponentiations. For example, 

                                                 4  +(     (2 )          (2 )           (2 )    )2 2 2

               (4 + (3 × 2 )) syn ((oooo)(((oo)(oo))((oo)(oo))((oo)(oo))))2

                          reduces to ( oooo     oo   oo     oo   oo     oo   oo    ) syn 16

2.34  Equality Differs from Identity and Synonymy.

        The sense of ‘Identity’ in standard logic is oxymoronic. Wittgenstein said, “To say of  two

things that they are identical is nonsense, and to say of one thing that it is identical with itself is to
say nothing at all” 5.5303. TLP.  What is involved is similarity, and similarity is a triadic relation,
not a binary relation.  A is similar to B wiith respect to C. We will say that two signs for natural
numbers that occur at different times or locations are “identical”  if they are similar with respect to

all internal grouping structures. Thus two sign-occurrences ((oo)(ooo)) and ((oo)(ooo)) are identical
but ((ooo)(oo)) is not identical with either. The same criterion holds for other words and signs.
((2+3)=5) and ((2+3)=5) are identical, but no two of ((2+3) = 5),((3+2) = 5) or (5 = (3+2)) are
identical. The
differences in identity are clearly established in the expressions using only parentheses.  For identity
of signs, the components, their order and their grouping must be the same.
.        The relation of synonymy obviously does not entail identity.  Whether words or phrases are in
the same language or in different languages, all significant instances of synonymy are instances of
non-idenical signs having the same meaning.  ‘1’ is not identical with ‘(( ))’, and ‘((oo)(oo)) =
(oooo)’ is not identical  with ‘(2+2)= 4’, though both pairs are synoymous. In logic (Pv(QvR)) is
synoymous with ((PvQ)vR) but the two formulas are not identical. It is a desideratum of language
that identical expressions used in a normal situation should  have one and the same meaning. This
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is a requirement in any logical argument.. So for logical and mathematical systems we may say that
identical expressions within those systems must be synonymous. The converse does not hold.

Among natural numbers, equality (as defined above) does not entail identity either of the
terms used or of the referents of those terms.  ((oo)(oo)(oo)) is equal to ((ooo)(ooo)) because both
reduce to the same positive integer, (oooooo). But they are not identical because their internal
groupings are different. And they are not synonymous. Two boxes of three chocolates is not
synonymous with three boxes of two chocolates. Thus although  (2×3) = (3×2) it is not the case that
(2×3) is identical to (3×2), or that ‘(2×3)’ syn ‘(3×2)’.
          Interestingly,   (2 + 2), (2 × 2), and 2  are all synonymous since all are synonymous with 2

((oo)(oo)), and all are equal, though no two of the four expressions are identical. These synonymies
are unique to the number 2, and are not characteristic of  +, × and the second power generally.  None
of  ‘(3 +2)’, (3 × 2), and 3  are either synonymous or equal, though (3 × 2) is synonymous  with and2

equal to (2+2+2) and 3  is synonymous with and equal to (3+3 +3) according to our defintions.2

2.35 Other Properties, Relations and Operations

Many other properties and relations of  natural numbers can be defined based on definitions
above. 

The relation, ‘â is the successor of  ã’ abbreviatiated as ‘S(â,ã)’ can be defined as,

            [S(â,ã)] syn [(ã) is a PI & â is (ã())]df 

The successor relation is the basis of the concept of enumeration or counting.
 The relations “â is greater than ã”( abbreviated as ‘â > ã’)  and “ã is less than â” 

(abbreviated as ‘ã < â ‘) can be defined in terms of addition:

            [â > ã] syn  [ã is Nn & (Ex)(x is Nn & â = (ã+x))]df

            [â < ã] syn  [ã > â] df

    
       ‘x>y’ for ‘(Ez)(x = (z + y))’
       ‘x<y’ for ‘(Ez)(y = (z + x))’

     Diff<â,ã,ä> for “The arithmetic difference between â and ã is ä”  

                                  “PIâ & PIã & PIä & (â + ä)= ã”

D2  ‘|x-y| = z’ for  ‘x = (z + y)’       
       ‘|y-x| = z’ for  ‘y = (z + x)’

D3   |x-y| = z & ~(Ew)(Ev)(|x-w| = v & v<z’
        y is the closest number to x that is smaller than x

D4     |y-x| = z & ~(Ew)(Ev)(|y-w| = v & v<z’
        y is the closest number to x that is larger than x

The concept of  “â is a factor of ã” (abbreviated ‘Fâã’) or “ã is divisible without
remainder by â”  is definable in terms of multiplication:
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            [Fâã] syn  [(Ex)(x is PI &  ã = â×x )]df

and from this we can define the properties of being divisible by 2 (being Even) or by any other
number, and of  “â is a Prime number” (abbreviate ‘Prâ’)

             [Prâ] syn  [~(Ex)(x is PI & ~ x=â & Fâ x)] df

Finally, although the natural numbers do not include negative numbers or any numbers
smaller than 1, the concepts of subtraction and division can be introduced as complements of
addition and multiplication.  Thus, subtraction relative to a sum, is defined as

            |=  [If ((â + ã) = ä) then (â = (ä&ã))]

This rule allows transfers of a number from one side of an equation to the other provided the + sign

is changed to & .  Similarly, division is introduced relative to a product. 

          |=  [If ((â × ã) = ä) then (ã = (ä ÷ â))]

As for the concepts of there being no number x, such that x = â�â when â is a Nn, or such

that x = ã�â when â > ã; this is simply stated (instead of a number “zero” or a negative number)

by the postulate;  

          |=  [If â is a Nn & ã is a Nn & (â > ã v â = ã)

                then ~(Ex)(x is Nn  & ((x = (ã ÷ â)) v  (x = ã& â)))]

2.5.  Ratios’ Relations and Properties (Rational Numbers)

If we wish to assert that two numbers stand in a certain relation, we present them as an
ordered pair, (n ,n ) this ordered pair becomes the subjects of a predicate. E.g., “Is greater than”, “is1 2

Less than”, “is integrally equal to”, “is a factor of...”. In English we usually put these predicates
between the two subject terms as in “n is greater than n ”, “n  is Less than n ”, “n  is integrally1 2 1 2 1 

equal to n ”, etc., and this is reflected in the conventional mathematical language:  (n >n ) ,  (n <n ),2 1 2 1 2

(n =n )..  Because mathematics has many predicates that apply to ordered triples,  ordered, n-tuples,1 2

and we want to regularize the form of predicates with the predicates preceding the subjects., we
might use the notation  >(n ,n ) ,  <(n ,n ),    =(n ,n )., but we shall avois this untill it becomes1 2 1 2 1 2

necessary.
           In many cases we want to talk about the relations between two or more ordered pairs of
numbers, rather than about the relation between members of one ordered pair of natural numbers.

The statements “2 is less than 4" and the “3 is less than 6", each talk about a relation between two
numbers in an ordered pair. But we may wish to point out that the ordered pairs (2,4) and (3,6) have
a cetain relationship, e.g., their two members stand in the same proportional relation as (1,2). When
we take ordered pairs of natural numbers as subject terms instatements about relations between them,

we call them ratios, and ratios of of numbers are expressed as (n :n )   Thus we may say that “The1 2

ratio of (1:2) is similar to the ratio of (3:6) in the proportions their members bear to one another.”
One kind of relation between ratios, let us call it “proportional equality” or ‘ =’, can be definedP

rigorously using integral equality at the base, . 
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2.6 General Comment on Natural Numbers 

Concepts of natural numbers are independent of properties and relations of things they may
be numbers are “of”.  The number of (physical) things in my pocket is 15, namely a ring of keys, a
comb and 13 coins. The number of coins in my pocket is 13, of which 2 are worth 25 cents, 2 are
worth 10 cents, 6 are worth  5 cents and 3 are worth 1 cent. The total value of the coins in my pocket
is 103 cents. Last night I woke up at 3:00 a.m. and focused my attention on 3 things: 1) trying to
calculate the product of 371 times 752 in my head, 2) trying to list reasons why the 2002 war by U.S.
against Iraq was wrong, and 3) the diversity of kinds of things that a positive integer could be the
number of. (i.e., what I am writing about in this paragraph)..
           Thus the different kinds of individual entities that can be grouped into one groups to which
a number may be applied are of the utmost diversity. The individual entities may be different kinds
of  physical object (coins, combs, key-rings) different kinds of ideas (ideas of numbers, of reasons
for a war), values of coins, of past events, ideas of events or any misture of any of these than may
occur, an unlimited other diverse kinds of entities.
          Numbers of things are not neceesarily like numbers of inches or numbers of pennies, or
centimeters, or numbers of degrees of temperature or numbers of ounces of weight, where all of the
units are equal, and adding them up give other units - feet, dollars. pounds, kilometers. The concept
of a metric system is an add-on to numbers. Pure natural numbers apply to entities, and three entities
consisting of a penny, an elephant and the Hudson bay  - or the 23 diverse items my wife brought
home from shopping - don’t add up to one thing the way twleve inches add up to one foot, and 3
inches add y\up to a quarter of one foot. The concept that every point on a straight line can be
assigned a number  - the contiuum hypothesis - may be a desideratum, but it does not come from the
concept of number or equality of numbers,  but rather from the fascinating equalities of distances and
areas and ratios in geometry.  Geometrical concepts should not be conflated with number theory. 
        

 2.4 Digresssion #1 - Other Theories of Natural Numbers 

   2.41 Peano 

All of Peano’s first eight axioms. (postulates?) for elementary arithmetic, will be derivable
from our definitions of numbers (the ideographic denotata of numerals as defined in parenthetical

notation above), of ‘1', of ‘+’, and of ‘=’, together with principles drawn from the logic of identity.

His axioms 2,3,4, and 5 simply apply to numbers the following principles of identity:

2.  (x) (xIx)

3.  (x) (y) (xIy o yIx)

4.  (x) (y) (z) ((xIy.yIz) ; xIz)

5.  (x) (y) (z) ((xIy . y is an N) ; x is an N)

His first postulate,

1.  1 is an N

translated into our system, says simply that (o) is an number, and since ‘(o)’ is a numeral, and the
class of numerals, on our account, stand in one-to-one correspondence with the class of (elementary)
numbers, our account satisfies 

P1.  The postulate P6, says that if any entity is a number then its successor is a number:



13

P6.  (x) (x is an N ; (x+1) is an N)

Proof: 1) x is an N Assumption

2) (oo) is an N Def. 1
3) (x(o)) is an N 1, 2, n of 2 clause (ii)
4) (x+1) is an N  Df ‘1' Df   ‘+’ 

5) If x is an N then (x+1) is an N (2-4) C.P.

and this certainly will follow also from our definition of numerals and T2.  Postulate P7 says that

successors of equal numbers are equal.

P7.  (x) (y) ((x is an N and y is an N); (x=y o ((x+1)=(y+1)))

and this also is subject to a quick and easy proof.  For if x and y are equal, then they reduce to the

same positive integer (by the definition of ‘R’ and ‘=’; the successor of each of these will be denoted
by a parenthetical expression which adds only one more zero-level expression, so that when the

intermediate parentheses are eliminated both will again reduce to the same positive integer, i.e., the

integer which is equal to the successor of the integer they both reduced to in the antecedent. Actually,

this postulate will need a principle of induction for its derivation.  Postulate P8 says simply that 1

is not equal to the successor of any (elementary) number:

P8.  (x) (x is an N ; ((x+1) ( 1))

And this, also, is perfectly obvious in terms of our definitions of ‘N’, ‘1' and ‘=’; (o) is not equal to

any [(n(o))]  where n is a number.  The final postulate, is in effect the principle of mathematical

induction:

P8.  (x) (x is G ; x is an N) . 1 is G .  (x)((x is an N . x is G); (x+1) is G));

6 (x) (x is an N ; x is G).

Although this principle will be a meta-theorem of our system, it is not adequate as a postulate of the
system due to the fact that we have not defined numbers in our system solely in terms of the

successor function.  Definitions D1 and D2 do not yield a linear (or strict simple) ordering as the

successor relation does in Peano’s definition of N based on P6.  For clause (ii) of D2 allows an
indefinite number of results of performing the operation of “replacing each occurrence of ‘0' in a

given numeral by some or other numeral”.  Thus this mode of generating the numbers gives at best

a partial ordering.  Nevertheless, it is possible to find an alternative to P9 which is stronger, and from

which P9 may be deduced.  Thus we may conclude that given our definition of the relation, as an3

 

 1 Cf. For example, Kleene, Stephen Cole Introduction to Metamathematics, 1952 s 50, in which3  

he indicates how to formulate an appropriate principle of induction for the system of Hans Hermes’
“Semiotik Eine Theorie der Zeichengestalten als Grundlage für Untersuchungen von formalisierten

Sprachen”, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, n.s., No. 5,

Leipzig, 1938.  Hermes definition of ‘entity’, like our definition of number, involves parenthetic

enclosure of any finite series of entities previously established, and thus yields only partial ordering.

operation on compound groupings and the consequent definition using logical identity, I, and
predicate logic of ‘=’, our theory of elementary arithmetic will conform to the requirements of Peano

arithmetic, and thus constitute a viable theory of the arithmetic of positive integers.
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We could go further and define other functions - the subtraction function, the division

function, - and relations like greater than, less than, etc., in familiar ways with the concepts at hand.

More ambitiously, we could present a formal axiomatized system, and set about proving this system

complete with respect to Peano Arithmetic.  However, these tasks are not relevant to our present

purpose.  Our purpose thus far has been merely 1) to define a domain of objects, called elementary
numbers (which may be called a sub-class of the class of organized groupings), 2) to give an
inductive definition of a specific set of linguistic expressions to be built up from parentheses ‘(’ and
‘)’ and called ‘numerals’, 3) to propose that all and only those organized groupings which correspond
ideographically one-to-one to these numerals constitute the exact domain of objects that elementary

arithmetic is about, and 4) to propose that the relations: and function based on the elimination of all
intermediate groups, Rxy, (as distinct from the successor function) together with logical identity and
predicate logic, may be adequate for all the relations, beginning with arithmetic equality, ‘=’ needed

in elementary arithmetic.  This we will examine in the next section. 
 Our final step is to show, if that this much as been granted, then it is possible to define in

a very clear way the difference between mathematical relation and certain kinds of relations between

numbers or sets of numbers which are contingent and non-mathematical.

   2.42 Frege-Russell    

           Frege and Russell wanted to derive all of mathematics, including of Cantor’s theory of
infinites, from logic - from the logic of classes in particular. Central to their project was Cantor’s
concept of equipollence. Two sets are equipollent if and only if there is some function or way to

establish a 1:1 correspondence between their members - i.e., for every member of the first set there
is one and only one member of the second, and for every member of the second set just the one
corresponding member of the first. If  two sets are finite then they can be equipollent if  and only if
they have the same number of members. For example the sets of numbers {1,2,3} and {2,7,8} are

equipollent, since they can be put in 1:1 correspondence in several ways. E.g., the pairing
{<1,2>,<2.7> ,3,8>} or the pairing {<1,7>,< 2,8>,<3,7>} are .equipollent., but {1,2,3} and {1} are
not. Infinite set, however, can be equipollent when one is only a subset of the other. The set of even
numbers is equipollent with the set of all natural numbers because for each even number there is one
and only one natural number that is half of it and for each natural number there is one and only one
number that is twice that number. But of course there are many numbers (odd numbers) in the set
of natural numbers that are not members of the set of even numbers  - in a certain obvious sense, the
set of natural numbers is greater than the set of even numbers, so the two sets are equipollent but not
identical.
       The Frege-Russell definition of a cardinal  number (vs an ordinal or counting number) is simple

to state. The cardinal number A of the set A, is the class of all sets equipollent to A. Using ‘.’ for

the relation “...is equipollent to..” this is symbolized as  

                     The number A = {B: B. A}  

Frege and Russell then define the numbers 0, 1 and 2, as follows (we subscript these numbers with

f to indicate these are Frege-Russell definition of these numbers): 

                     0   =  {0} f df

that is, in the Frege Russell view is the set of all sets having no members. The number 1 is defined
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as, 

                     1   = {A: (Ex)(x0A & (y)(y0A q x= y))} f df 

that is, the number 1 is the set of all unit sets (all sets having only one member). In the Frege Russell

system this is equivalent to the following definition using equipollence:  

                     1   = {A: A.{0}} f df 

I.e.,  1    is the class of all classes that are in 1:1 correspondence with {0}f

The definition of 2    (in contrast to 2 syn  (()()) ) is: f a df   

                     2   = {A: A.{0{0}}}f df 

or, equivalently,  

                     2   = {A: (Ex)(Ey)(x0A & y0A & x…y & (z)(z0A q (z=x v z=y))} f df 

and 3    (in contrast to 3  syn  (()()())) is defined as f a df

                      3   = {A: A.{0{0{0}}}}f df 

                 or 3   = {A: (Ex)(Ey)(Ew)(x0A & y0A & w0A & x…y & y…w & w…x f df 

                                                           & (z)(z0A q (z=x v z=y v z=w))} 

Thus the class {George Washington, Abraham Lincoln, Franklin Roosevelt} 0 3 ;  i.e., the class off

those three individuals is a member of 3, which is the class of all classes that have just three
members.
         The equipollence definition of number allows Frege-Russell to assign a number to the infinite

class of all natural numbers, namely the cardinal number T  .  Other infinite classes have differentl

cardinal numbers. This is cumbersome way to define number set in a paradox-laden theory of
classses. But with a little ad hoc patching up, it is remarkable for its capacity to produce proofs about
its sets which corresponded to accepted mathematical results; even though Gödel showed it could
never be both complete and consistent.

   2.43 Hilbert 

           In 1922 Hilbert published “The New Grounding of  Mathematics; First Report”. Like Frege
and Russell he wanted to have an axiomatic foundation for mathematics that would cover all of
“higher” mathematics including Cantor’s numbers for infinite classes. But he rejected the definition
of number through the logic of set theory on the grounds that “the concept of a set has given rise to
paradoxes” (p 199). “Frege tried to ground number theory on pure logic,” he wrote, “Dedekind tried

to ground it on set theory as a chapter of pure logic; both failed to reach their goal.”(p 201)
However, he pointed out that “the paradoxes of set theory can not be regarded as proving that the

concept of a set of integers leads to contradictions”.(p 199) He went on, 

     “The solid philosophical attitude that I think is required for the grounding of pure mathematics...is
this: In the beginning was the sign.

    “With this philosophical attitude we turn first to the theory of elementary arithmetic, and ask
ourselves whether and to what extent, on this purely intuitive basis of of conrete signs, the science
of number theory coujld come into existence. We therefore begin with the following following
explanation of the numbers.
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     “The sign 1 is a number.
     “A sign that begins with 1 and ends with 1, and such thatin between + always follows 1 and 1
always follows +. Is like a number; for example the signs

               1+1
               1+1+1

These number signs [Zahlzeichen], which we assume are numbers and which completely make up
the numbers, are themselves the object of our consideration, but otherwise they have no meaning

[Bedeutung] of any sort. In addition to these signs, we make use of yet other signs that mean someth
and servee for communication, for instance the sign 2 as an abbreviation of the number-sign 1+1 of
the sign 3 as an abbreviation for the number sign 1+1+1‘; moreover, we use the signs =, >, whhich
serve for the communication of assertions. Thus 2+3 = 3+2 is not to be a formujla, but merely to
serve to communicate the fact that 2+3 and 3+2, with respect to the abbreviations we are using, are
the samne number-sign 1+1+1+1+1. ....

“For purposes of communication we shall also use letters a, b, c for number-signs.  Then 

b > a is also not a formula, but only the communication that the number sign b extends beyond the

number-sign a. ....
            “When we develop number theory in this way, there are no axioms, and no contradictions
of any sort are possible. We simply jhave concrete signs signs as objects, we operate with them, and
we make contentual [inhaltliche] statements about them . And in particular, regarding the proof

...that a + b = b + a,,I should like  that this proof is merely a procedure that rests on the construction
and and deconstruction of number-signs and this is essentially different from the principoe that
polays such a prominent role in higher arithmetica, namely the principle of   complete induction or
of inference from n to n+1. This principle is is rather, as we shall see, a formal principle that carries
us  farther and and that belongs to a higher level; it needs proof and the proof can be given.

“We can of course make considerable further progress in number theory using th intuitive
and contentual manner of treatment which we depicted and applied. But we can not conceive the
whole of matheamtics in such a way.  Already whenwe cross over into higher arithmetic and algebra
- for example if we wish to make assertions about infinitely many numbers of functions  - the
contentual  procedure breaks down.  For we can not write down number-signs or introduce
abbreviations for infinitely many numbers....

“But we can achieve and analogous point of view if we move up to a higher level of
contemplation, from which axioms, formulae, and proofs of the mathematical theory are themselves
the object of contentual investigation. But for this purpose the usual contentual ideas of the the
mathematical theory must be replaced by formulas and rules, and imitated by formalisms. In other
words, we need to have a strict formalization of the entire mathematical theory...” pp202-204

Hilbert goes on to lay out the specific basic signs that are used in mathematics, and to try
to develop the formal rules and and formulas that are implicitly used in proofs that move from
one mathematical statement to another.  In effect it is treating mathematics as rules for
manipulating symbosl without reference to what ths symbols mean, but with the requirement that
the whole axiomatic system by both consistent and complete. Hilbert’s logic was essentially the
first order logic of the Frege-Russell-Whitehead, but did not try to define numbers as sets - there
were set of numbers, but numbers weren’t defined as a certain class of classes of classes.

 Hilbert’s program, like the Frege Russell program, failed due to Godel’s proofs. (But
these proofs were relative to systems of logic like PM’s .  
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In my theory ‘1’ has a meaning. It denotes a concept. ‘2’ and each positive iteger denotes
a different concept. The relation of. equality, ‘=’. in the theory of natural numbers holds of two
numbers only if a certain specific operation one those numbers yields a specific testable result. 

2.5 Digression #2 - Applications and Add-ons

The properties and relations of natural numbers qua numbers are independent of the
properties and relations of things to which we apply those numbers. Applications to particular
kinds of things become facilitated by adding on distinctions and concepts that belong the field of
application rather than to natural numbers as such. Many such add-ons are based on applying
numbers to concepts of  Euclidean space and of time which are quite independent of the concept
of natural number. We will revert the this theme at each stage, but initially we look upon
negative numbers, fractions and the number zero, as examples of this thesis.

2.51 Negative Numbers 

Natural numbers are positive, and one can define the difference between two natural
numbers in terms of addition. If   (Î + Ï) = Ð, then the difference between Î and Ð is  Ï
and the difference between Ï and Ð is Î.  This can be expressed as,

            If  Î is a Nn & Ï is a Nn & Ðis a Nn & (Î + Ï) = Ð then  Ï = |Ð�Î| &  Î = |Ð�Ï|.

This may be viewed as subtraction, applied to natural numbers it is like saying

                            2+3 = 5 (which means) ((oo)(ooo))= (ooooo)

therefore  the difference between 5 and 2 is 3  and  the difference between 5 and 3 is 2 ; “take
away (subtract) 3 from 5 and you have 2 left” 

                             |(ooooo)-(oo) | = (ooo)
                     and  |(ooooo)-(ooo)| =  (oo)

But given the condition stated in the antecedent,  it makes no sense to speak of any positive
number that is left, if you try to take a larger number away from a smaller number. Take away 5
from 2 and what do your have? Well, you can’t take 5 away from 2, because 2 doesn’t contain
five units to be taken away. To “take away five units” if you have only two to begin with is an
oxymoron, unless you believe in magic. 

Although the difference of two natural numbers is conditioned upon subtracting a smaller
number from a larger number. Mathematicians wanted to generalize subtraction. Instead of the

restricted rule (x)(y)(z) (If  (x+y) = z then (x = (z-y) &  y= (z-x))), they wanted a general rule, so
that any number on one side could be switched to the other side by changing + to� or vice versa.
That is they wanted,

        .  (x)(y) (If  (x = y) then (x�y) = 0 & �y =�x & 0 = (y� x)

Combined with  (x)(y)(z) ((x = y) iff   (z+x) = (z+y) which holds of all natural numbers, this
allows many new equations by treating negative numbers and 0.as numbers.
           The concept of negative numbers is useful in many applications. In commerce we are
interested in comparing what we spend to what we owe.  If  my bank account shows a negative
number of dollars, it means I have spent more than I have. In temperature readings, we are
interested in whether the temperature will freeze or boil water. We say it is 0 degree centigrade if
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it is freezeing, and  -10 degrees if it is ten degrees below freezing. If we are counting years on a
calendar, we shoose some year (e.g., the year of Christ’s birth) as the year 0, and then use
negative numbers  -300 for years before Christ. 

In the Cartesian coordinate system  which has been so central in what mathematicians call
“analysis” (as in analytic geometry),  we list two sets of negative numbers (on the x axis and on
the y axis), and assign 0.to a point at which positive number end and negative numbers begin.
This system allows us to associate 0 in the coordinate system with any particular thing, and then
think of negative numbers as representing points going in oppositie directions from the positive
numbers on a two dimensional plane. This device is enormously helpful in representing
geometrical; shapes, areas, motions, changes in speeds, etc.. of two variables. But it does not
come out the theory of pure natural numbers. It is a device which is helpful in applying numbers
to geometrical concepts that are quite independent of the concept of natural numbers

Mathematicians have conflated the pure theory of numbers with operations, properties
and relations which hold in the field of geometry. Because.in Euclidean geometry the area of a
square figure can always be thought of having four equal sides, and these sides can be divided
into any n equal legnths, and further the area of that square can then be divided into n×n equal
square units which in total equals the area of the initial square, the relation of numbers when
applied to geometry are conflated with the relations of natural numbers by themselves, and
mathematics  is 
treated as the merger of geometry and natural numbers. But this is a mistake. Euclidean geometry
is enormously useful in human affairs, as is the application of mathematics to its findings. But
this does not warrant expanding the concept of number to include zero and negative quantities,
the roots of prime numbers, and pi as additional kinds of numbers. 

2.52 Division and Fractions

Just as one can not subtract a larger number from a smaller one, one can not divide a
natural number by a larger number than itself.  But if we begin with a product equal to some
positive integer, it will follow that that integers is devisible into a specifc number of equal parts.

 If  Î is a Nn & Ï is a Nn & Ðis a Nn & (Î × Ï) = Ð then Ð/Ï= Î & Ð/Î= Ï.

where ‘Ð/Ï’ means ‘Ð is divisible by Ï’. This does not mean that every number can be divided
by any number. We shall deal later with ratios between natural numbers, and much can be said
about that. But the idea that any line segment can in theory be divided in to n equal parts comes
out of geometry, not from the concept of natural numbers. Even when we get to ratios, the
concept of equality of a group of fractional parts, is an add-on from processes of trying to apply
numbers to procedures of geometrical construction. It is not an idea derivable from the idea of
equality among natural numbers.
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Chapter 3 - SYSTEMS OF ARABIC NOTATION

We gave names ‘1’, ’2’,..., ‘9’ to the positive integers  ‘(())’, ‘(()())’... ‘(()()()()()()()()())’.
But the definition of  positive integer allows additional positive integers without limit. We can’t

continue to use a new single sign for the name of each additional integer. This would go on
indefinitely. The system of arabic notation uses strings of digits to ascribe a precise name to any
conceivable positive integer no matter how large. This method of naming suggests that in theory
a a distinct name to can be given to each member in an infinite set of distinct positive integers. In
practice, however, that is impossible. 

Using just the positive integers from 1 to 9, we were able to give examples of the major
operations, addition, multiplication and exponentiation, as well as the major relations (identity,
equality, greater than, and successor of) and the major properties (odd, even, prime) of this small
set of  elementary numbers. With arabic notation the same disitinct operations, relations,
properties, rules and algorithms can be shown to be applicable to any natural numbers we may
choose - i.e., to  natural numbers uniiversally, no matter how large or complex.

3.1 The Decimal System

          Our decimal system of  numbers with base 10  came from India. It was developed by
Arabic scholars, and was introduced in Europe by Leonardo of Pisa, also called Fibonacci,  in
1202, although its general use began only around 1500. The first sentence of the first chapter in
Fibonacci’s book, Liber Abaci, is,

“These are the nine figures of the Indians 
                                                                 9 8 7 6 5 4 3 2 1

With these nine figures, and with the sign 0..., any number can be written as will now be   
             demonstrated.”

Instead of a new single digit for the number ten, the first digit ‘1’ was coupled with the sign ‘0’.
The sign ‘0’ is a digit, though it is not the name of any positive integer or natural number
standing by itself. Thus the combination ‘10’ - with ‘1’ on the left and ‘0’ on the right -  is
offered as the name of  the positive integer {(oooooooooo). Thereafter no new digits are
introduced. Instead, subsequent positive integers are named by ordered sequences of two or more
of the ten digits.

The decimal system involves, first, the ordered sequence, 1,2,3,4,5,6,7,8,9, standing
respectively, for the positive integers (o), (oo), (ooo), (oooo), (ooooo), (oooooo), (ooooooo),
(oooooooo), (ooooooooo). The next positive integer, (oooooooooo), is called the base of the
decimal system and is represented by ‘10’.  Secondly, after 10 the 2-digit numbers 11, 12, 13, 14,
15, 16, 17, 18, 19 represent 10+1, 10+2, etc,, i.e, the natural numbers ((oooooooooo) (o)), 
((oooooooooo) (oo)), etc., up to 10+9, or 19 for  ((oooooooooo) (ooooooooo)). Each of these is
equal to (reducible to) just one positive integer, namely, respectively.(ooooooooooo); .
(oooooooooooo),  (ooooooooooooo), etc., up to (ooooooooooooooooooo). And the arabic
numerals, ‘11’, ‘12’, ...,’19’ are taken as the names of these positive integers. These positive
integers are ordered by increasing size, each number in the sequence being the successor (having



20

one more unit than) the number before it. After 19, we get  ((oooooooooo) (oooooooooo)) i.e., 10
+ 10, which is two tens, called ‘20’. Thus ‘20’ becomes the name of the positive integer

(oooooooooooooooooooo) that is  equal that is equal to 2 × 10, ((oooooooooo)(oooooooooo)). 
20 is followed by 21, which stands for (((oooooooooo) (oooooooooo))(o)) or 20 +1, then 22,
23,...,29, after which comes 3 × 10 which is means ((oooooooooo) (oooooooooo)(oooooooooo)) 
‘30' denotes the positive integer  (oooooooooooooooooooooooooooooo) to equal to 3 × 10.  And
so on. When we get to 99, we have nine 10's plus 9. The successor of 99 is gotten by replacing

the right-most positive integer by its successor 10. This gives us ten tens, or (10 × 10) or 10 ,2

which is equal to (reduces to) the positive integer we call 100.. In this procedure, each successive
numeral stands for the positive integer with just one more unit than the one preceding it. One can
go on as far as one wishes, with 1000 the name of the positive integer equal to 10×10×10, etc .. .  
 

Children in their first year of school can learn the system of counting to 100, or 1000 ot
10,000 using the decimal system. They memorize the count to 10, and then learn to use that
count in moving from ten to twenty, from twenty to thirty, and so on up to 100, to 1000
etc..Learning to count involves a process of memorization plus an application of simple rules 
that are quite independent of knowing what the numbers mean. That a child can count to 200 in
the decimal number system does not imply that he or she knows how to construct any of the
positive integers.
          Children in early grades are taught algorithms for adding and multiplying numbers as large
as you please. These are based on memorizing the addition and multiplication tables for numbers
1 to 10 in the decimal system, together with rules of  “carrying over” for sums or products greater
than 10. Seldom, if ever, do they  produce the actual positive integer which is denoted by the sum
or product, but it can be proven that if the algorithm is followed, then the numeral that results at
the end of the process, is the name of precisely the positive integer that would be equal to the
natural  number that is the sum or product of the two initial large numbers.

Given any numeral in the decimal system to find the positive integer it stands for one can
proceed as follows: Given the sequence of n digits (without a decimal point) which is the
numeral
            Step 1) multiplying the left-most digit by the n  power of 10th

            Step 2) adding the result of multiplying the 2nd left-most digit by the (n-1)  power of 10; th

                        or  if the 2nd left-most digit is ‘0’ do nothing and move on, 
                 .  .  .  .
            Step (n-1)  adding the result of multiplying the 2nd left-most digit by the 1  power of 10; st

                        or  if the (n-1)  left-most digit is ‘0’ do nothing and move on,th

            Step (n)  adding the positive integer named by the last (n ) digitth

                        or  if the n  left-most digit is ‘0’ do nothing.th

            Step (n+1) Removing all intermediate parentheseses from the result of steps 1) to n).         
                              The result will be the positive integer named by the given sequence of digits.

3.2 Arabic Notation Generalized for Any Integral Base

The decimal system is one system among many which use the same general principles for
naming positive integers.  Any positive integer greater than 1 can be the base of an arabic
notational system.  Presumably (oooooooooo) was chosen as the base because this is the number
of fingers humans have, and human counting is aided by pointing to things with our fingers.The
general nature of arabic notation is more easily grasped in arabic number systems with smaller
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bases such as 2, 3, or 6.
 The simplest system of arabic notation uses the base 2.  The numeral 2 never occurs in
numerals of this system because ‘10’ is used in place of  2.  In this system the positive integers
are enumerated as shown in the table below, as compared with the decimal system

All arabic numeral systems use the digits ‘1’ and ‘0’ and (in English) all have the words
“one” for ‘1’, “ten” for ‘10’  and “eleven” for ‘11’,  “one hundred”, “one hundred and one”, “one
hundred and ten”, “one hundred and eleven”, for ‘100’, ‘101’, and ‘111’, “one thousand” for
‘1000’, “one million” for ‘1,000,000’  and so on.

 But obviously, these words will have different meanings depending on which base is
used. If  (oo) is the base, ‘10’ i.e., ‘ten’, means what we call 2 in the decimal system and 
‘1,000,000’ i.e., “one million” means the positive integer associated with 2  (called  64 in the6

decimal system). We need different signs to convey these differences in meaning. To do this we
will subscript a simple name for just the positive integer which is the base after each numeral in
the given arabic notation. Thus 1,000,000  = 64 , where X is the Roman numeral for the number2 X 

after nine - the positive integer that we who use the decimal system, call “ten”. But we must
distinquish ‘X’ or ‘decem’ from ‘10’ and ‘ten’.  which have different meanings depending on the

base used, In Latin ‘X’ and ‘decem’ have just one meaning: namely, the positive integer,
(oooooooooo). In ordinary language ‘ten’ and ‘X’ are thought of as synonymous. This is because
we customarily use of the decimal system. But they are not synonymous here. We want ‘X’ to
mean only the positive integer (oooooooooo),  while ‘ten’ and ‘10’ means the base of whatever
arabic numeral system is being used. Let ‘Z’ stand for ‘twelve’, i.e., (oooooooooooo). In each
row of the table below, the positive integer in the left-most column displays the meaning that is
common to all of the different names given to in different arabic numeral systems shown in the
five columns on the right.

Positive Integer Name in 2-system and in English Names Names Names Names
in 3- in 6- in X-  in Z -
system system system system

(o) 1              One 1 1 12 3 6 1 x z

(oo) 10            Ten 2 2 22 3 6 2 x z

(ooo) 11            Eleven 10  ten 3 32 3 6 3 x z

(oooo) 100          One hundred 11 4 42 3 6 4 x z

(ooooo) 101          One hundred and one 12 5 52 3 6 5 x z

(oooooo) 110          One hundred and ten 20 10  ten 62 3 6 6 x z

(ooooooo) 111          One hundred and eleven 21 11 72 3 6 7 x z

(oooooooo) 1000        One Thousand 22 12 82 3 6 8 x z

(ooooooooo) 1001        One thousand and one 100 13 92 3 6 9 x z

(oooooooooo) 1010        One thousand and ten 101 14 X2 3 6 10 tenx z

(ooooooooooo) 1011        One thousand and eleven 102 15 Y2 3 6 11x z

(oooooooooooo) 1100        One thousand one hundred 110 20 10  ten2 3 6 12x z
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(ooooooooooooo) 1101       One thousand one hundred and one 111 21 112 3 6 13x z

(oooooooooooooo) 1110       One thousand one hundred and ten 112 22 122 3 6 14x z

(ooooooooooooooo) 1111       One thousand one hundred and 120 23 132

eleven
3 6 15x z

(oooooooooooooooo) 10000     Ten thousand 121 24 142 3 6 16x z

(ooooooooooooooooo) 10001     Ten thousand and one 122 25 152 3 6 17x z

(oooooooooooooooooo) 10010     Ten thousaand and ten 200 30 162 3 6 18x z

(ooooooooooooooooooo) 10011     Ten thousand and eleven 201 31 172 3 6 19x z

(oooooooooooooooooooo 10100     Ten Thousand, one hundred 202 32 18
)

2 3 6 20x z

Formulas are easily constructed for translating any numeral in a system with one base  to
a numeral in another base that stands for the same positive integer, Thus we can establish that
10  = 110  = 101  while 1000  = 22 = 8  Algorithms can be produced for adding or multiplyingX 2 3 2 3 X. 

mixed numerals drawn from different arabic systems. However, algorithms are simplest if  all
numerals are expressed in the same system.
           The following equalities hold no matter what base is used: Let b be a variable which can
take any positive integer as its value.  In each b-system of arabic notation. 

    10  = b to the first power        10  = (oo)                                 = (oo) = 2b 2 X

  100  = b to the second power  100  = ((oo)(oo))                       = (oooo) = 4b 2 X

1000  = b to the third power    1000  = (((oo)(oo))((oo)(oo)))    = (oooooooo) = 8  b 2 X

                              10  = (ooo)                              = (ooo) = 33 X

                           100  = ((ooo)(ooo)(ooo))          = (ooooooooo) = 93 X

                         1000  = (((ooo)(ooo)(ooo))((ooo)(ooo)(ooo))((ooo)(ooo)(ooo)))3

                          = (ooooooooooooooooooooooooooo) = 27               X

                                                       Etc....
Certain arithmetic equations hold for all arabic numeral systems. For example, ten times ten
always equals one hundred, and ten times one hundred always equals one thousand even though
‘ten’ and ‘one hundred’ stand for different positive integers in each arabic numeral system.

 
          Algorithms in any arabic numeral system are based, as in the decimal system, on basic
addition and multiplication tables. In the systems with bases 2 and 3 these tables look like this:

      + |  1   10         × |  1   10                   + |  1    2  10           × |  1   2   10  
      1 | 10   11         1 |  1   10             1 |  2  10 11            1 |  1   2   10
     10| 11 100        10| 10 100              2 | 10  11 12           2 |  2   11  20  

                                                          10| 11 12 20          10| 10  20 100  

Algorithms for adding and multiplying larger numbers in each of these systems, requires
memorizing the tables of that system, together with rules for “carrying” over when sums or
products exceed 10. Since the addition and multiplication tables are different in each system,
algorithms differ in different systems, although all have equally effective algorithms for
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multiplication and addition. Further, addition and multiplication tables in all arabic systems have
certain features in common. Compare the tables above with those in the decimal system. 

             + |  1   2  3   4   5   6   7   8   9  10           × |  1    2    3    4    5    6    7    8   9   10  

             1 |  2   3  4   5   6   7   8   9  10  11           1 |  1   2    3    4    5    6    7    8    9   10

             2 |  3  4   5   6   7   8   9  10  11 12           2 |  2   4    6    8  10   12  14  16  18   20

             3 |  4   5   6   7   8   9 10  11 12 13           3 |  3   6    9   12  15   18  21  24  27  30 

             4 |  5   6   7   8   9  10 11 12 13 14           4 |  4   8   12  16  20   24  28  32  36  40 

             5 |  6   7   8   9  10 11 12 13 14 15           5 |  5  10  15  20  25   30  35  40  45  50 

             6 |  7   8   9  10 11 12 13 14 15 16           6 |  6  12  18  24  30   36  42   48  54  60     

             7 |  8   9  10 11 12 13 14 15 16 17           7 |  7  14  21  28  35   42  49   56  63  70  

             8 |  9 10  11 12 13 14 15 16 17 18           8 |  8  16  24  32  40   48  56   64  72  80 

             9 | 10 11 12 13 14 15 16 17 18 19           9 |  9  18  27  36  45   54  63   72  81  90 

            10| 11 12 13 14 15 16 17 18 19 20          10| 10 20  30   40 50   60  70   80  90 100 

In every arabic numeral system the following rules hold 

1) The multiplication table has 1, 10, 100, 10 in its four corners, respectively.

2) The lower-left to upper dight diagonal of the addition table has 10s, with 11's on their right.
3) In every arabic notation system the laws of commutation, association and the distribution 

of multiplication over addition hold:

        A)   (a + b) = (b + a)                                                     B)    (a × b) = (b × a)
        C)   (a + (b + c)) = ((a + b) + c)                                    D)   (a × (b × c)) = ((a × b) × c)
                                          E)   (a × (b + c)) = ((a × b) + ( a + c))

4) In every arabic notation system laws of exponents hold for all arabic numerals with only           
     1 and 0.as digits;
     A)   Multiplication:        a  × a  = a                      n m n+m

     B)   Division:                 a  ÷ a  = a ,   if m> n n m n-m

     C)   Raising to a power:    (a )   = a m n n×m 

     D)   Power of a product:    (ab)  = a bn n n

3.3  Digression #1 - Arabic Notation for Non-Integral Bases (e.g., e)

In mathematics some arabic notation systems are based on non-integers such as fractions,
or  numbers such as Euler’s e which begins  2.718281828... and expands indefinitely.  We will
deal with so-called irrational numbers, and what we can do with them, later from a different point
of view.

3.4  Digression #2 - Arabic Numeral Systems and Metric Systems for Physics 

Physics deals with things and events in space and time. It associates numbers with
distances, areas, volumes and periods of time. In all of these cases, its assumes the things it talks
about come in quantities that can be viewed as multiples of units that are equal to each other. The
metric system for measuring lengths, widths etc, is based on the decimal system with X or
[oooooooooo] as its base. 10 mm = 1 cm, 10cm = 1 decm, 100cm = 1 meter, 1000m = 1km  
These are all different kinds of spatial lengths.  10 things in a garbage bag = 1garbage bag of
things. 10 garbage bags with 10 things each in them, = 100 things in 10 garbage bags.   Take
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away 7 things from one of the bags, you have 93 things in 10 garbage bags. Take away 7 cm from

one meter of 10 have 93 cms. left. I.e., there  is a heirarchy of metric distances, each kind of
metric distance is a fixed fraction of the kind above it. 

         “Things” is not part of a hierarchy of kinds. Take away 7 things from 100 things and you

have 93 things left, but not 93 things of some kind that are all the same. As from 1 meter, we

shift to 93 centimeters. A centimeter is a different kind of thing than a meter, but one meter is

geometrically equal to 100 centimeters by definition, so the whole consisting of 100 centimeters
is a kind of thing, namely a meter, which is a different kind of thing that its parts, centimeters.
The 93 things left are all things of the same kind of thing, in that they are all centimeters (all
geometrically equal in size), and they are different kinds of things than the whole meter which

existed before 7 centimeters were removed.  Taking seven things away from one of  the garbag

bags,  and what is left are 93 things. But the whole set of 100 things that were in the different
garbage bags, was not some kind of thing (like a meter) such that things left are all things of a

different kind than the thing that was the whole.  Natural numbers assume individual entities (or

things), and groups of individual entities, and groups of groups of individual things.. But
these groups are not at each level associated with a different  kind of thing, or a separate kind of
individual entity.

To be sure in Arabic notation, a group of 100 things is equal to 10 groups of 10 things (or
4 groups of 25 things or 5 groups of 20 things, or 50 groups of 2 things or 2 groups of 50 things).
This make arabic notation in the decimal system seem quite parallel to metric systems based on
the decimal system. But a meter, or meter stick, is a physical object, fixed in the physical world
and natural objects, distances, etc., are measured by meter sticks, which are marked off into
centimeters and millimeters. The currency of the United States also is parallel to the decimal
system, with 10 cents worth 1 dime and 10 dimes worth 1 dollar, and $10 bills and $100 bills and
$1,000 bills, with equalities, by definition, between these kinds of bills and coins. 

Chapter 4 - RATIOS OF NATURAL NUMBERS

The study of natural numbers includes not only the relation of greater and smaller
between two numbers, but the proportions of greatness or smallness between two numbers. Since
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every natural number is equal to just one positive integer, we may confine our discussion to the
ratios of positive integers. The ratio of any two complex numbers will be equal to the ratio of the
two positive integers that are equal to them.   
            To say positive integer a is greater than positive integer b, doesn’t say much about their
size relationship. By addition and subtraction we can tell how much greater  a is than b ; this is
precise additional information. In some cases we can tell precisely how many times greater a is

than b; this adds more information, but works exactly (without remainder) only when a is a
multiple of b.

  To get the precise relationship of relative greatness or smallness, we need to present both
numbers in a way that shows the ratio of a to b.  We use the colon to indicate this. ‘(a:b)’ means

or stands for the ratio of a to b. To talk about the ratio of 2 to 3, we use ‘(2:3)’ as the name of
that ratio. To speak of the ratio of 2 to 3, does not imply that 2 is divisible by 3, for it is not.  In

this book ‘(2:3)’ does not mean the same as ‘2/3’ which would imply (incorrectly) that the
natural number 2 can be composed of 3 equal positive integers. 

                        If (3×2) = (6×1) then (3:1) = (6:2).

        In general if (x×y) = (z×w) then (x:w) = (z:y).

        4.1  Ratios

Every particular integer has a positive ratio, a:a, to itself., which we will call a 1-1 ratio.  
For any two different positive integers a and b there are two ratios,  a:b and b:a. If  a is greater

than b, then a:b is a greater ratio or G-ratio; if a is less than b, then  a:b is a lesser ratio or L-

ratio. Any L-ratio is the reciprocal of a G-ratio and vice versa The following table of ratios
begins the enumeration of ratios in a systematic way.  The darkly shaded diagonal contains only

1-1- ratios. The lightly shaded upper-right section contains only G-ratios - ratios that are 

1:1   9999 2:1  bbbb 3:1  bbbb 4:1   bbbb 5:1   bbbb 6:1    bbbb 7:1    bbbb 8:1   bbbb 9:1    bbbb 10:1  bbbb

1:2   6666 2:2  8888 3:2  8888 4:2  8888 5:2  8888 6:2   8888 7:2   8888 8:2   8888 9:2   8888 10:2  8888 

1:3  6666 2:3  6666 3:3  8888 4:3  8888 5:3  8888 6:3   8888 7:3   8888 8:3   8888 9:3   8888 10:3  8888

1:4  6666 2:4  6666 3:4  6666 4:4  8888 5:4  8888 6:4   8888 7:4   8888 8:4   8888 9:4   8888 10:4  8888

1:5  6666 2:5  6666 3:5  6666 4:5  6666 5:5  8888 6:5   8888 7:5   8888 8:5   8888 9:5   8888 10:5  8888

1:6  6666 2:6  6666 3:6  6666 4:6  6666 5:6  6666 6:6   8888 7:6  8888 8:6   8888 9:6   8888 10:6  8888

1:7  6666 2:7  6666 3:7  6666 4:7  6666 5:7  6666 6:7  6666 7:7  8888 8:7   8888 9:7   8888 10:7  8888

1:8  6666 2:8  6666 3:8  6666 4:8  6666 5:8  6666 6:8   6666 7:8  6666 8:8   8888 9:8   8888 10:8  8888

1:9  6666 2:9  6666 3:9  6666 4:9  6666 5:9  6666 6:9   6666 7:9  6666 8:9  6666 9:9   8888 10:9  8888

1:10 6666 2:10 6666 3:10 6666 4:10 6666 5:10 6666 6:1  6666 7:10 6666 8:10 6666 9:10 6666 10:108888

T
greater than 1-1. The lower left unshaded section contains only L-ratios - ratios that are less than

1-1, where (x:y)<(z:w) if and only if  (x × w)<(z × y). 

       The enumeration begins with the ratio of (o) to (o) or 1:1. Its next step is to the L-ratio 1:2 or 

(o):(oo). The third step is to 2:2 or (oo):(oo) and the fourth step is to 2:1 or (oo):(o), from which
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it moves to 1:3 or (o):(ooo). Thereafter it follows the following form: a) after the (n-1)  th step 2  

the numbers from from 1 to n are entered sequentially on the                   Step      Ratios

left of ‘(...:n)’ b) after (n:n) the numbers from n-1 to 1 are entered          1 =1      (1:1)2

in reverse order on the right of ‘(n:...)’. The last step is the n  step         2           (1:2)2  rd

in the total sequence, so one proceeds in the same fashion with n+1.        3           (2:2) 

                                                                                                                     4 =2      (2:1)  2

4.2  Proportional Equality, vs. Numerical Equality                                5           (1:3)     (1:n)    
                                                                                                                6           (2:3)     (...:n) 

Ratios are not equal to natural numbers.  Given our definition         7           (3:3)    ( n.:n)

of equality - “reducible to the same positive integer” - ratios are pairs         8           (3:2)     ( n:..)

of natural numbers and can not be reduced to a single positive integer.       9 =3      (3:1)     ( n:1)2

           This is clear in primitive notation  (1×2) is,by definition, ((oo)), and by our defintion of
equality (1×2) = 2 i.e.,  ((oo)) = (oo), and (1×7) = 7, i.e., ((ooooooo)) = (ooooooo), and so on for
all positive integers. 

But the concept of division in natural numbers is different than the concept of a ratio. The
former is conditioned on multiplication. It does not hold of most pairs of positive integers: 7 is
not divisible by 2, or by 3, or by 4. But all pairs of natural numbers have specific ratios.The
customary equations  2/1 = 2 or in general  (n/1) = n are okay. They follow from our definition of
division.?? For (1×2) = 2 and in general (1×n) = n.; it follows that n/1 = n,
           Pure number theory does not preuppose a metric system. Metric systems assume that 

that the ratio (14:2) is equal to 7, and in general,  If   (x × y) = z, then  x =(y:z) . We do not say
this, because a positive integer can not be equal (on our definition) to a ratio. They are objects of
different kinds. We may say that if  If   (x × y) = z, then z is divisible by x, ot by y, or that 

If  (x×y) = z, then x is a factor (a possible divisor) of z. But this is not so say that is equal to z:x.
Rather if  (x×y) = z then z has the relational propertiy of being equal to the sum of y  x’s.

No ratios of natural numbers are equal to a positive integer or to a natural numbers. But
there is a kind of equality, different from the equality of natural numbers, that they may have. We
will call this proportional equality and symbolize it by ‘ =.’  It holds only between ratios, not bep

tween positive integers or natural numbers..We will say that  a:b = c:d if and only if a×d = b×c. p

Thus, for example, 2:3 = 4:6 , because (2 × 6 ) = (3 × 4) . p

Df ‘ =’:  [ ((ââââ : åååå)  = (ãããã: ääää))  syn  ((ââââ × ãããã) = (ääää × åååå))]p p df

The defined synonymy of the two whole expressions does not entail that components of the two

different kinds of equality are synonymous.or equal.  ‘(ââââ × ãããã) ‘ is not equal to, or synonymous

with, or intersubstitutable with ‘(ââââ :ääää)’ ; the instance of the former, (2:3), does not bear these

relations to (2 × 6 ) as instance of the latter. In the case of proportional equality, many ratios will
be proportionately equal to each other. This differs from natural-number-equality. When any two
natural numbers are equal, they are reducible to one only one positive integer. But ratios each are
composed of two independent positive integers, and two independent entities can not be reduced
to just one positive integer.

4.3 Greater and Lesser Ratios

What does it mean to say that one ratio is greater, or lesser proportion wise than another?  

Df ‘ >’:    [((ââââ :ääää) >  ( åååå :ãããã ))  syn  ((ââââ × ãããã) > (ääää × åååå))]p p df

Df ‘ <’:    [((ââââ :ääää) <  ( åååå :ãããã ))  syn   ((ââââ × ãããã) < (ääää × åååå))]p p df
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Consider the ratios (1:3), (3:3), (3:1); they are proportionally greater or less. like 1/3, 1/1, or 3/1.

T((3×3) > (3×1))   .: T((3:3)  > (1:3))             T((3×1) < (3×3))  .: T((3:3)  <  (3:1))p  p

T((3×3) > (1×3))   .: T((3:1) > (3:3))             T((1×3) < (3×3))   .: T((1:3)  <  (3:3)) p p

T((3×3) > (1×1))   .: T((3:1)  > (1:3))             T ((1×1) < (3×3))  .: T((1:3)  <  (3:1))p p

Or consider the question, “Is (13:57) greater than (5:23)?”  Since by Df ‘ >’, p

((13:57) > ( 5:23))  syn  ((13 × 23) > (57 × 5))   p df

the question becomes, “Is it true that ((13×23)  > (57×5))?” Which, because (13×23)=299 and 

(57× 5)= 285, becomes “Is it true that 299 > 285?” To which the answer is obviously, yes.

The system of enumeration in Section 4.1 is such that for any n, the sequence from 

the (n , 2(n - 1))  to the n  terms in the sequence are arranged in order of size.  For example,2 th 2

the   5 (=(3 � 2(3� 1)) to the  9  (=3 ) terms are (1:3), (2:3), (3:3), (3:2), (3:1) ; th  2 th 2

the 10 (=(4 � 2(4�1)) to the 16  (=4 ) terms are (1:4), (2:4), (3:4), (4:4), (4:3), (4:2), (4:1). th  2 th 2

4.4 Decimal Points Addition of Ratios

It makes sense 1) to multiple or divide a ratio by a natural number, and 2) to multiply one
ratio of natural numbers by another; and 3) to find the ratio that one ratio of natural numbers
bears to another. But the concept of adding one ratio to another requires assumptions that are
required for some application, but not for all applications.

Multiplying Ratios. Ratios can be multiplied by numbers greater than 1; the result is a
ratio greater than the initial ratiio:  

            1)   ((x × 2):3)>(2:3)
When both members of the ratio are multiplied by the same number, the result is proportionately
equal to the initial ratio 

            2) ((x × 2):(x × 3)) = (2:3) p

When the denominator of the ratio is multiplied by a number greater than 1, the resulting ratio is
less than the original ratio. This may be viewed as dividing the ratio.:

           3) (2:(x × 3)) < (2:3)
A ratio can also be multiplied by another ratio. The phrase “one half of three halves is three

fourths” is expressed, using multiplication, as (1:2)×(3:2) = (3:4), and is gotten by the formula,

((a:b)×(c:d)) = ((a×c):(b×d)), For example, 

4) ((1:2)×(3:2)) = ((1×3):(2×2)) = (3:4)
       

The Ratios of Ratios. There is such a thing as the ratio of one ratio to another ratio.

Not only can one ratio be greater, less than or equal proportionately to another; they may stand in 

definite ratios to each other. Thus the ratio (3:2) is three times (1:2);.in symbolism, (3:2):(1:2) =p

(3:1).  The ratio (1:2) is one third of the ratio (3:2), i.e., (1:2):(3:2) = (1:3). And since (1:2) =p p

(5:10),  (5:10) is one third of (3:2) i.e., (3:2):(5:10) = (3:1). The formula is:p

           5) (((a:b):(c:d))  = ((a × d):(b × c))p

The relation of being a ratio is like the relation of being =..  a:b = c:d  syn   a×d = b×c. p p

Examples: ((1:2):(3:2)) = ((1 × 2):(2 × 3)) = (2:6) = (1:3)p p p

     ((3:2):(1:2)) = ((3 × 2):(2 × 1)) = (6:2) = (3:1)p p p

     ((5:10):(3:2)) = ((5 × 2):(10 × 3)) = (10:30) = (1:3)p p p
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Note that this is not the same as multiplying ratios.

Multiplying two ratios is:             ((a:b)×(c:d))  = ((a×c):(b×d))       e.g.,  (1:2)×(3:2) = (3:4)

Finding the ratio of two ratios is  (((a:b):(c:d)) = ((a×d):(b×c))       e.g.,  (1:2) :(3:2) = (1:3)p

Addition of Ratios.
1. Suppose I have two grocery bags. Bag A has 3 things in it, Bag B has 7 things in it. The

ratios of things in the two bags are (3:7) or (7:3), i.e., Bag B’s contents are less than Bag A’s in

the proportion (3:7) or Bag A’s contents are greater s than Bag B’s in the proportion (7:3). 
2. Now suppose I have two bags, Bag C and Bag D, and that Bag C has 13 things in it

while Bag D has only 2. The ratios of things in the two bags are (2:13) or (13:2), i.e., Bag D’s

contents are less than Bag C’s in the proportion (2:13) or Bag C’s contents are greater s than Bag

D’s in the proportion (13:2). 

           3.  What would it mean here to add the ratio (3:7) to the ratio (2:13)? What would

‘(3:7)+(13:2)’ mean? What would ‘(7:3)+(2:13)’ mean? Does the result of adding a:b to c:d

equal (a+c):(b+d)  e.g. does (3:7)+(13:2) = (16:9) analogously to multiplication? If not, why not?
And which of the ratios should be added, any way, since each has two versions?  

  In standard mathematics the addition of fractions is done by the following formula:
                      (a/b) + (c/d)  = (((a × d) +(b × c))/(b × d))
Replacing slash marks by colons, this becomes

                      (a:b) + (c:d)  = (((a × d) +(b × c)):(b × d))

Thus for example: (3:7)+(2:13) = (((3×13) + (7× 2)):(7×13)) = (39 + 14):91 = (53:91)

                       Or (3:8)+(2:12) = (((3×12) + (8× 2)):(8×12)) = (36 + 16):96 = (52:96) = (13:24)p

                       Or (2:8)+(3:12) = (((2×12) + (8× 3)):(8×12)) = (24 + 24):96 = (48:96) = (1:2)p

                       Or (1:4)+(1:4)   = (((1 × 4) + (4× 1)):(4 × 4)) = ( 4  +  4 ):16 = (8 : 16) = (1:2)p

Why is the answer  (3:7)+(13:2) = (53:91) better than (3:7)+(13:2) = (16:9)? Well, if you assume
that all units are entities equal in a certain respect (physical size, weight, units of time), then we
can find applications which produces visibly confirmable sums of these. But this is an
assumption that goes beyond the definition of pure numbers or pure ratios of numbers. That is, it
doesn’t follow from pure number theory.      
          The followin theorem which lies at the base of trignometry, is of particular interest. Under
cerrtain conditions,   
                 If   x < y < z and (x + y) > z ,  then     x     +    y   =  z                           2 2  2                         
                                                                      7 z ?        7 z ?     7 z ?
or, in our notation,  If   x < y < z and (x + y) > z ,  then (x:z)   + (y:z)   = (z:z)  2 2  2

Reverting to the fractional notation, the proof of this begins with 
                                                                           x              y                  z 
                 If   x < y < z and (x + y) > z ,  then     z      +     z         =       z   
                                                                           z              z                  z                                       

     
                                                                     x              y                  z    
From this is follows that
            
                If   x < y < z and (x + y) > z ,  then    x × x    +    y  ×  y    =    z  ×  z                           

      
                                                                    7 z     z ?      7 z      z  ?     7 z      z  ? 

and hence, If   x < y < z and (x + y) > z ,  then     x     +    y   =  z                           2 2  2                        
                                                                       7 z ?        7 z ?     7 z ?

                                                                           x              y                  z 
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                 If   x < y < z and (x + y) > z ,  then     z      +     z         =       z     =   z     =  1 
                                                                           z              z                  z           z         1                    
                                                                      x              y                  z    
By addition of ratios of ratios, we get
                                                              x          y            x × z     y×z       x+y    x +y2 2

y =1    If   x < y < z and (x + y) > z ,  then     z    +   z     =     z    y  + z  x   =  y  x = x × y =  x +   2 2

  z     z                                                              z          z                  z× z               z          2    2 2

                                                              x          y                  x×y             x×y     x × y 
   

         

When does x +y  = 1?  When and only when  x +y  = z ×1 .2 2 2 2 2

                    z
2

Under what conditions does this hold?
          In geometry ratios are associated with comparative lengths of lines, or with ratios of areas. 
The Pythagorean Theorem proved that in plane Euclidean geometry the two square areas built on
the sides of a right triangle would equal in total area the square built on the hypotenuse.

           In standard mathematics is is taken for granted that the ratio (n:1) = n, where n is a
positive integer or a natural number as we have defined it. 76/1 = 76. While a ratis not identical
with any natural number, it true that (1xn) = 1. However, proportional equality is preserved in
ratios if both the numerator and the denominator of the ratio are multiplied by the same numbers. 

Thus (76:1) = ((10x76):(10:1)) p

 
======================================================

3.4 Irrationals as Approximate Ratios relative to a base.

===============================================================
Finding proximate square roots of Positive Integers:

Df ‘ =’:  [ ((ââââ : åååå) = (ãããã : ääää))  syn  ((ââââ × ãããã) = (ääää × åååå))]p p df

Df ‘ >’:  [((ââââ : ääää) >  (åååå : ãããã))  syn  ((ââââ × ãããã) > (ääää × åååå))]p p df

Df ‘ <’:  [((ââââ : ääää) <  (åååå : ãããã))  syn   ((ââââ × ãããã) < (ääää × åååå))]p p df

          

“(x/d) is the proximate proportional equal of (a/b), given the base d”
              ((x/d) = (a/b)) & ~(Ey)(PIy & ((y/d) = (a/b)) & ~ y=x))PRXp PRXp

         means

“(x/d) is the rational fraction with the denominator d that is closest to being  equal to  (a/b) p

& no Positive Integer is such that it, with the denominator d, is closer to being  equal to (a/b)”p

If  PIy & PI z & PIw ) then (Ex)(PIx & ((x/y) = (z/w)) PRXp

                                            & (v)(((v/t) = (z/w)) => v=x))PRXp

===================

2.5.  Ratios’ Relations and Properties (Rational Numbers)

If we wish to assert that two numbers stand in a certain relation, we present them as an
ordered pair, (n ,n ) this ordered pair becomes the subjects of a predicate. E.g., “Is greater than”,1 2

“is Less than”, “is integrally equal to”, “is a factor of...”. In English we usually put these
predicates between the two subject terms as in “n is greater than n ”, “n  is Less than n ”, “n  is1 2 1 2 1 

integrally equal to n ”, etc., and this is reflected in the conventional mathematical language:  (n2 1
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>n ) ,  (n <n ),  (n =n )..  Because mathematics has many predicates that apply to ordered triples, 2 1 2 1 2

ordered, n-tuples, and we want to regularize the form of predicates with the predicates preceding
the subjects., we might use the notation  >(n ,n ) ,  <(n ,n ),    =(n ,n )., but we shall avois this1 2 1 2 1 2

untill it becomes necessary.
           In many cases we want to talk about the relations between two or more ordered pairs of
numbers, rather than about the relation between members of one ordered pair of natural numbers. 

The statements “2 is less than 4" and the “3 is less than 6", each talk about a relation between two
numbers in an ordered pair. But we may wish to point out that the ordered pairs (2,4) and (3,6)
have a cetain relationship, e.g., their two members stand in the same proportional relation as
(1,2). When we take ordered pairs of natural numbers as subject terms instatements about

relations between them, we call them ratios, and ratios of of numbers are expressed as (n :n )  1 2

Thus we may say that “The ratio of (1:2) is similar to the ratio of (3:6) in the proportions their
members bear to one another.” One kind of relation between ratios, let us call it “proportional
equality” or ‘ =’, can be defined rigorously using integral equality at the base, . P

There are six possibilities, with x first in the antecedent and x first in the consequent:
                                      xyzw => xyzw, xywz, xzyw, xzwy, xwyz, xwzy
 Two preserve proportionality: xzyw and xwzy 
 Two fail because the second ratio is the inverse of the good cases second ratio: xzwy & xwyz
The other two,   xyzw => xyzw, xywz,  fail because the second ratio is the inverse of the first???

    If   x × y = z ×w then x = (z × w):y) and then  x:z = w:y   or x:w = z:y

                                                                         xzwy               xwzy

                                             If  x × y = z ×w then (x:w = z:y)              xyzw, xwzy

                                   [E.g., if  3×20 = 4×15 then (3:15 = 4:20)]   or 3/15 = 4/20 = 1/5 = 0.2000

                                             if  20×3 = 4×15 then (20:15= 4:3)]    or 20/15 = 4/3 = 4/3 =1.3333

                                             if  3×20 = 15×4 then (3:4 = 15:20)]   or 3/4 = 15/20 = 3/4 = 0.7500

                                             if  20×3 = 15×4 then (20:4 = 15:3]     or 20/4 = 15/3 = 5/1= 5.0000

                                             if  4×15 = 3×20 then (4:20 = 3:15)]     or 4/20 = 3/15 = 1/5

                                             if  15×4 = 3×20 then (15:20  =3:4)]     or 15/20 = 3/4 = 3/4                 

                                         if  4×15 = 20×3 then ( 4:3 = 20:15)]    or 4/3 = 20/15 =  4/3

                                             if  15×4 = 20×3 then (15:3 = 20:4)]     or 15/3 = 20/4 = 5/1

        Or alternative is OK     If  x × y = z × w then ( x:z = w:y)                xyzw, xzwy

                                   [E.g., if  3×20 = 4×15 then (3:4 = 15:20)]   or 3/4 = 15/20 = 3/4 = 0.7500    

                                          if  20×3 = 4×15 then (20:4 = 15:3)]   or 20/4 = 15/3 = 5/1 = 5.0000

                                             if  3×20 = 15×4 then (3:15 = 4:20)]   or 3/15 = 4/20 = 1/5 = 0.2000

                                             if  20×3 = 15×4 then (20:15 = 4:3]    or 20/15 = 4/3 = 4/3 = 1.3333

                                             if  4×15 = 3×20 then (4:3 = 20:15)]   or 4/3 = 20/15 = 1/5

                                             if  15×4 = 3×20 then (15:3 =20:4)]    or 15/3 = 20/4 = 5/1                   

                                        if  4×15 = 20×3 then ( 4:20 = 3:15)]   or 4/20 = 3/15 = 1/5

                                            if  15×4 = 20×3 then (15:20 = 30:4)]  or 15/20 = 3/4 = 4/3

           Not   If  x × y = z × w  then (x:y = z:w)                    xyzw, xyzw

                                            if 20×3 = 15× 4  then (20:3 =/  15:4)    6.666 =/  3.75

                                  Not   If  x × y = z × w  then (x:y = w:z)                     xyzw, xywz

                                            if  20×3 = 15×4  then (20:3  =/  4:15)    6.666  =/  2.666

                                  Not   If  x × y = z × w  then (x:z = y:w)                      xyzw, xzyw
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                                            if  20×3 = 15×4  then (20:15  =/  3:4)    1.333  =/  .75 

                                  Not   If  x × y  = z × w then (x:w = y:z)                      xyzw, xwyz

                                           if  20×3 = 15×4  then (20:4  =/  3:15)     5.000  =/  .2000

==================

Finding proximate square roots of Positive Integers:
Df.   [ (x/d)  = $(a/b) ]  Syn   [(x/d)  = (a/b)] 2

PRX PRX

Theorem:  (y)(z)(w)(If  PIy & PI z & PIw )
                                       then (Ex)(PIx & (x/y)  = (z/w) & (v)(((v/t)  = (z/w)) => v=x))2 2

PRXp PRXp

Problem: Instantiate y,z,w with positive integers, then find the value of x
Example:

1. Let  y=1,000, z=2, w= 1 
2.  (If  PI(1,000) & PI(2) & PI(1)
                  then (Ex)(PIx & (x/1,000)  = (2/1)2

PRXp

                             & (v)(((v/1,000)  = (2/1)) => v=x))2
PRXp

3. PI(1,000) & PI(2) & PI(1)
4. (Ex)(PIx & (x/1,000)  = (2/1) & (v)(((v/1,000)  = (2/1)) => v=x))2 2

PRXp PRXp

Problem:  What PI = x?

                      (x/1000)  = (2/1) 2
PRXp

                      (x / 1000 ) = (2/1) 2 2
PRXp

                      (x  × 1) = (2 × 1000 )2 2
PRXp

y=1,000, z=2, w= 1 
  1. 1,000 .= 1,000,000                                                         2

  2. (2 × 1,000,000) = 2,000,000
  3. (2 ×  1,000 .) = 2,000,0002

  4. 1,414  = 1,999,3962

  5. |1,999,396� 2,000,000| =    604
  6. |1,414 � (2 ×  1,000 .)| =    604           | (w × x )� (z × y )| = 6042 2 2 2

  7. 1,413 = (1,414 � 1)
  8. 1,413  = 1,996,5692

  9. (1,414 � 1)  = 1,996,5692

10. |1,996,569 � 2,000,000| = 3,431
11. |(1,414�1) � (2×1,000 .)| = 3,431       |(w × (x -1) )� (z× y )|  = 3.4312 2 2 2

12. 1,415 = (1,414 + 1)
13. (1,414 + 1)   = 2,002,2252 

14 .|2,002,225� 2,000,000| = 2,225
15  |(1,414 +1) � (2×1,000 .)| = 2,225       | (w × (x +1) )� (z × y )| = 2,2252 2 2 2

16.  3,431 <  604 <  2,225   

17. |(1,414�1) � (2×1,000 .)| <  |1,414 � (2× ,000 .)|  <  |(1,414 +1) � (2×1,000 .)|2 2   2 2  2 2

          |(w × (x -1) )� (z× y )| <   | (w × x )� (z × y )|   <  |(w × (x -1) )� (z× y )| 2 2  2 2  2 2

========================

“The proximate square root of (Î:Ï) for the base Ñ is (Ð:Ñ)”
means
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“The rational fraction that is closest to (Î/Ï) with the denominator Ñ is (Ð/Ñ)”

“The proximate square root of (a:b) for the base d is (c:d)” ( @2 ,d) = (c/d))PX

means

“The rational fraction that is closest to (a/b) with the denominator d is (c/d)”

“The proximate equal of (a/b) for the base d is (c/d)”               (@2 ,d) = (c/d))PRX

means

“The rational fraction that is closest to being equal to  (a/b) with the denominator d, is (c/d)”

Form of the Problem: What is the most exact square root of x:1, relative to the denominator y ?

Form of the Answer: The most exact square root of x:1, relative to the denominator y = z .
To state an actual problem, is to replace x and y by positive integers.

    E.g., What is the most exact square root of 2:1, relative to the denominator 5 ?
To state an actual answer, is to find a positive integer to replace z, such that it can be

  proved that the form of the answer is true when x and y are replaced by the positive integers
  as stated in the actual problem. 

    E.g., The most exact square root of 2:1, relative to the denominator 5 = 7/5. 

What is the most exact square root of 2:1,  relative to the denominator n ?

Problem: (@2 ; 5)  (?/5) –

Amswer: (@2 ;5)  (7;5)–

 Proof of answer:
 “the closest approximation relative to denominator 5, for the square root of 2/1, is 7/5"

Proof: 1) (7/5)×(7/5) = (7/5)  = (49/25) 2

           2) 49/25 is the closest proportional to 2/1. relative to the denominator 5  

           3) ((49×1)  (2×25))–

           For, |2(5�1)  � (7 )| <   |2(5)  � (7 )| <  | 2(5+1)  � (7 )|) 2 2  2 2  2 2

                     |2(4)    � (7 )| <   |2(5)  � (7 )| <  |2(6)  � (7 )|) 2 2  2 2  2 2

                     |32 � 49)|  <    |50 � 49| <     |72 � 49|)          

                          17         >         1    <         23                 

 “The proximate square root of 2/1 with the denominator 1,000,  is 1,414/1,000"

Proof:  1) (1414/1000)×(1414/1000) = (1414/1000)  = (1,999,396/1,000,000)2

 2) (1,999,396/1,000,000)  is the closest proportional to 2/1. relative to the base 1.000  

            3) ((1,999,396/1,000,000) = (2/1)PRX

            4) ((1,999,396 × 1) = (1,000,000 × 2)PRXP

            5) ((1,999,396) = (2,000,000)PRXP

                 |(1414�1)  � (2× 1,000 )| <   |(1414)  � (2× 1,000 )|  <  | (1414+1)  � (2×1,000 )) 2 2  2 2  2 2

                     |(1413)  � (2× 1,000 )| <   |(1414)  � (2× 1,000 )|  <  | (1415)  � (2×1,000 )) 2 2  2 2  2 2

                    |1,996,569� 2,000,000| < |(1,999,396 � 2,000,000| <  |2,002,225� 2,000,000))     

                                3,431                <                 604                 <               2,225   

                    
 ===============================================================

“(x/d) is the proximate equal of (a/b), given the base d”               (x/d) = (a/b))PRX
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means

“(x/d) is the rational fraction with the denominator d that is closest to being equal to  (a/b)” 

Df.   [ (x/d)  = $(a/b) ]  Syn   [(x/d)  = (a/b)] 2
PRX PRX

Theorem:  (y)(z)(w)(If  PIy & PI z & PIw )
                                       then (Ex)(PIx & (x/y)  = (z/w) & (v)(((v/t)  = (z/w)) => v=x))2 2

PRXp PRXp

Problem: Instantiate y,z,w with positive integers, then find the value of x
Example:

1. Let  y=1,000, z=2, w= 1 
2.  (If  PI(1,000) & PI(2) & PI(1)
                  then (Ex)(PIx & (x/1,000)  = (2/1)2

PRXp

                             & (v)(((v/1,000)  = (2/1)) => v=x))2
PRXp

3. PI(1,000) & PI(2) & PI(1)
4. (Ex)(PIx & (x/1,000)  = (2/1) & (v)(((v/1,000)  = (2/1)) => v=x))2 2

PRXp PRXp

Problem:  What PI = x?

                      (x/1000)  = (2/1) 2
PRXp

                      (x / 1000 ) = (2/1) 2 2
PRXp

                      (x  × 1) = (2 × 1000 )2 2
PRXp

y=1,000, z=2, w= 1 
  1. 1,000 .= 1,000,000                                                         2

  2. (2 × 1,000,000) = 2,000,000
  3. (2 ×  1,000 .) = 2,000,0002

  4. 1,414  = 1,999,3962

  5. |1,999,396� 2,000,000| =    604
  6. |1,414 � (2 ×  1,000 .)| =    604           | (w × x )� (z × y )| = 6042 2 2 2

  7. 1,413 = (1,414 � 1)
  8. 1,413  = 1,996,5692

  9. (1,414 � 1)  = 1,996,5692

10. |1,996,569 � 2,000,000| = 3,431
11. |(1,414�1) � (2×1,000 .)| = 3,431       |(w × (x -1) )� (z× y )|  = 3.4312 2 2 2

12. 1,415 = (1,414 + 1)
13. (1,414 + 1)   = 2,002,2252 

14 .|2,002,225� 2,000,000| = 2,225
15  |(1,414 +1) � (2×1,000 .)| = 2,225       | (w × (x +1) )� (z × y )| = 2,2252 2 2 2

16.  3,431 <  604 <  2,225   

17. |(1,414�1) � (2×1,000 .)| <  |1,414 � (2× ,000 .)|  <  |(1,414 +1) � (2×1,000 .)|2 2   2 2  2 2

          |(w × (x -1) )� (z× y )| <   | (w × x )� (z × y )|   <  |(w × (x -1) )� (z× y )| 2 2  2 2  2 2

===============================================================
The rational ratios we are interested in finding are ratios with some denominator n, that

are the nearest approximation to satisfying some irrational function.

We start by giving an example.  The square root of 13, it is said, is an irrational number.
But every answer ever given to the question “what number is the square root of 13 ?” is always
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rational fraction that solves the problem approximately, but not exactly. There are an unlimited
number of correct approximate answers, none of them equal to each other.  For example, in the
decimal system, 3.6, 3.61, 3.606, 3,6056, 3.60555, ...and infinitely more are all accurately
described as the approximate square root of 13 relative relative to its denominator. Each not only
is approximate to the nearest tenth, one-hundredth, one thousandth, ten-thousandth, and hundred-
thousandth (in the decmial system)  respectively. So instead of the loose and inaccurate predicate

” âis the square root of ã”, we shall define the predicate,

             “â is the value to the nearest ä of â × â = (ã:ä)”

This means â is the ratio of natural numbers with the natural number ä as denominator, that

comes closest to satisfies a  square root of 13. To characterize this set, we need to meet two
conditions.  One I call the approximation condition, the other the uniqueness condition.

a) the approximation condition, or delimitation condition, marks off a sub-set of ratios, in
effect, at least one of which must be chosen given any specified denominator

b) the uniqueness condition selects just one of the sub-set.approximate ratios, as the           
            nearest ratio 

3.41 Example: “Square root”defined

In the case of y =  !x  what we are looking for is some ratio, y:z,z

                       such that (y:z × y:z)  is = to the closest possible rational ratiop

                        to the rational ratio x:z.
.
a) The approximation condition

First we choose the denominator, w, and we require (approximation condition)
    That: (13(w-1)  <     z           < 13 (w+1) )2 2 2

Let  w=100     (13× (100-1)  <     z           < 13×(100+1) )2 2 2

     (13× (99)  )   <     z           <  13× (101)2 2 2

     13×(99) = 127,413       <     z           <  132,612 = 13× (101)2      2 2

if z =    356      127,413          >   126,736     ####         132,613

            357      127,413        <   127,449   <  132,613
358  127,413       <   128,164   <  132,613 

         359   127,413       <   128,881   <  132,613 Thus the approximation
         360   127,413       <   129,600   <  132,613 condition restricts 

361 127,413 <   130,321 < 132,613 values of @13 relative
362 127,413 <   131,044 < 132,613 to the denominator 100,
363 127,413 <   131,769 < 132,613 to eight values (on the
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364      127,413          <   132,496      <         132,613 left)

365 133,225 <   133,225 > 132,613

6) the Uniqueness condition

Next we require that just one of the values in the sub-set above be chosen, and that this be the
one whose square is closest to a number reducible to 13/1; with denominator = 100, this turns out
to be 361. I.e., the square root of 13, to the nearest 100  = 361/100 or 3.61.th

The uniqueness condition in this case is expressed as 

 \ (z-1)  - 13(100)  \ >  \ (z  - 13(100)  \ < \ (z+1)   - 13(100)2 \2 2 2 2 2

That is, the difference between z  and 130,000 must be less than both the difference between2

(z+1)  and 130,000 (ie.  13(100)  ).  Now the differences involved with respect to different values2 2

of z are as follows:

  (357)  =  127,449    |127,449  - 130,000 \ = 25512

 (358)  =  128,164    |128,164  - 130,000 \ = 18392

 (359)  =  128,881    |128,881 130,000 \ = 11192    -   

 (360)  =  129,600    |129,600  -  130,000 \ =   4002

 (361) =  130,321    |130,321   130,000 \ =   321    p2     - 

 (362)  =  131,044    |131,044  -  130,000 \ = 10442

 (363)  =  131,769    |131,769  -  130,000 \ = 17692

 (364)  =  132,496    |132,496  -  130,000 \ = 24962

To meet the uniqueness condition the difference in the right=hand column must be both less than
the one above it and less than the one below it.  Obviously this can apply to only one case, in this
case, 361, whose square is only 321 different from 130,000.  Hence the proximate value of the

square root of 13, for the denominator 100 =  361 , i.e., in decimal notation,  3.61.
                                                                       100
The preceding thus determines the value of 13 for the denominator 100, the set of values for all
different denominators, i.e., for every natural number as denominator, is settled in the same way. 
For any given denominator, w, the approximation condition selects a subset of positive numbers
(and through them a sub-set of ratios) of which is

Z (13 ×\w-1\  <   z   <  13 × (w+1) )2 2 2

and from these z’s it selects the one and only z such that

\ ( z-1)  - 13w  \ > \ z  - 13w  \ <  \ (z+1)  - 13w  \2 2 2 2 2 2

We may therefore define   # 13 as the setw

Y  (Ez) [y=z . ((13(w-1)  <  z2 <  13(w+1) ) . (\(z-1)  - 13w  > \ z  -13w  \< \(z+1)  - 13w2\))] 2 2 2 2 2 2 2

                w
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And in general, we may define the function @ a     (assuming a is eP) as:w

Y(Ez) [y=z . ((a \ w-1 \   > z   > a(w+1) ) .  (\(z-1)  -aw2 \  } \ z2 -aw  { \(z+1)  -aw  \))] 2 2 2 2 2 2 2

         [see what page]     w

We may if we wish, add a couple of refinements.  As it stands, with w ranging over all
positive integers presumably, we will get some strange members of the set  @ a where w isw

small.  We may wish to restrict ourselves to some sub-set of this set.  For example, consider
decimal expressions of @13 :   36, 361 3606, 36056, 360555, . . . 

           10 100 1000 10000 100000   
                   or,   3.6, 3.61, 3.605, 3.6056, 3.60555, . . .      
this set may be expressed by replacing ‘w’ with ‘10  getting ‘ %10  13. ‘ as the name of alln n

decimal approximations which we call the square root of 13 (to the denominator w, where w=10n 

for some n).
Another refinement which might be added, is a convergence condition.  This would

require that ratios with larger denominators only be admitted to the set if they are “closer” to an
exact fit than any ratio with a smaller denominator.  This condition can be expressed by adding
the following clause to the definition of a given above:w

(u) (v) (u e e @ a.  .   (Ez) (Ew) ((z   e@ a. .  V< w ) 7 (# z  - aw # < # u -av # ))     w w
2 2 2 2

        v                          v                                       w                                        z            2 2

This in effect will eliminate any ratio with a larger denominator which is less close to its
successors than some ratio with a smaller denominator.  For example,

36   = 1296 ; it falls       4       (0.04) short of being   1300   (i.e.,.13)2

  10   100                100                                   100
and 361  = 130,321 ; it is        321   away from being 130,000   (i.e., 13)2

100  10,000            10,000                               10,000
and 3606 =  13,003,236 ; it is          3,236   away from 13,000,000 (i.e., 13)

1000  10,000,000       10,000,000          10,000,000

what we want, by the convergence condition is that each ratio, as the denominators get higher,
comes “closer” to the ration 13/1

Now       321      Is less of a difference than    4    (.0321 < .04) hence 361/100 is okay.
           10,000                                             100
And   .0003236 < .0321 hence 3606/1000 is okay; it converges.

10,000

 ====================================================== 

Distribution of multiplication over addition preserves equality: 

    (3 x (4 + 5))     =  (((oooo)(ooooo))((oooo)(ooooo))((oooo)(ooooo)))
             =  27       =  (ooooooooooooooooooooooooooo) 
= ((3x4) + (3x5))  =  (((oooo)(oooo)(oooo))((ooooo)(ooooo)(ooooo))
             = 27        =  (ooooooooooooooooooooooooooo) 

Distribution of addition over multiplication does not preserve equality: 

     (3 + (4 x 5))  = ((ooo)((ooooo)(ooooo)(ooooo)(ooooo)))
                 = 23  = (ooooooooooooooooooooooo)
((3+4) x (3+5))  =  (7 x (3+5))  =
(((ooo)(ooooo))((ooo)(ooooo))((ooo)(ooooo))((ooo)(ooooo))((ooo)(ooooo))((ooo)(ooooo))((ooo)
(ooooo))) = 56 = (oooooooooooooooooooooooooooooooooooooooooooooooooooooooo)
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============

There are many relations of Similarity and Difference among abstract groups of entities
are ternary,  not binary, relations. The two signs ‘(()()())’ and ‘(()()())’ are similar with respect to

parenthetical structure but different with respect to location. If we call the first one a and the
second one b, then we may symbolize their similarity and difference as SIM(a,b,S) and
DIFF(a,b,L).
            In contemporary logic and mathematics the term ‘identity’ is conflated with ‘equality’ in
logic and mathematics. But we distingusih the two relations here. In one sense, it is an oxymoron
to say that two entities are identical. However, in speaking of two natural numbers, ‘a is identical
to b’ can mean “a is similar to b with respect to grouping structure” (abbr. SIM(a,b,S) although
“a is different from  b with respect to location.” (abbr. DIFF(a,b,L).  4 times 3 equals 12 and also

6 times 2 equals 12, but 
             ‘4 times 3’ means ((()()())(()()())(()()())(()()())) 
.            ‘6 times 2’ means ((()())(()())(()())(()())(()())(()())); 
so 4 times 3 is different than 6 times 2 with respect to grouping structure.  All of the following
are quite different with respect to grouping structure: 42×11, 3×154,  77× 6,  21×22 , 33×14, 7×
66; though all are equal to each other and to = 462.  Indeed, even the commutative law of
multiplication 
 (x×y) = (y×x) hides differences in grouping structure.     

2.22 If we wish to think of component entities within a compound 15 x ntity as
distinguisble from other entities within that compound (without saying in what respect they are
distinguished) we can subscript ‘()’ or ‘e’ with a numeral  Subscripted numerals do not represent

numbers (the alphabet letters could do as well ); they are merely a familiar set of signs that are
different as signs and their differences as signs are used to represent the fact that certain entities

are different (without saying how they differ) from other entities in a group of entities . 

============1/13/04===>
In every positive integer a necesssary presupposition is that each unit is distinct from and

independent of any other unit in the group. The symbol ‘(()()())’ for 3 or any other positive

integer satisfies this assumption; every unit is distinct with respect to location in the symbol from

every other unit. If you cound 4 things, then discover that the first is the same thing as the third
you counted, then you say there were really only 3 things. In dealing with number we assume this
kind of mistake is not made, or if made is corrected.

In adding numbers, whether positive integers or compound numbers, the assumption must
be that each unit listed is distinct from and independent of every other unit within each positive
integer and/or in any other positive integer in the compound. 

In multiplying, i.e., in replacing each unit in a given possible integer with another positive
natural number, it must be assumed that every unit introduced by this process is distinct from
every other unit introduced in the product. 

The symbols with parentheses for addition and multiplication satisfies this assumption;

every unit is distinct with respect to location within the symbol from every other unit.
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Ratios are relations between natural numbers. Ratios differ from natural numbers with
respect to the requirement of distinctness of units. Units in each of the natural numbers that are
the numerator and the denominator must be distinct from all other members of that natural
number. But the two members of the ratio may, or may not, refer to the same, or part of the same,
group of individuals. For example the numerator may be the number of individuals in some class,
and the denominator may be the number of individuals in a sub-set of that class -- or vice versa. 
            Different units within a natural number must represent distinct entities. But a relation is
not a natural number. It is a relation between natural numbers. A relation is not a unitary thing. 

(1:2) is a different ratio than (4:8) but the units being talked about in (1:2) may be the same units

that are being talked about in (4:8).

12 stands in the relation ‘(...= the product of ....)’ to 6 distinct of positive-integer-
multiplication-pairs,  namely, to (12 × 1), (1 × 12), (2 × 6), (6 × 2), (3 × 4), (4 × 3). The relation
we are talking about here is the natural-number-equality relation between an integer and
multiplication-pairs of positive integers. There are just 6 distinct instances of it. Natural-number-
equality (what is ordinarily called simply equality) is a relation relation that is always talking
aobut exactly the same entities in both terms. In other words, the twelve distinct ratios

       (12:(12 × 1)),  (12:(1 × 12),  (12:(2 × 6)),  (12:(6 × 2)),  (12:(3 × 4)),  (12:(4 × 3)), 

       ((12 × 1):12),  ((1 × 12):12),  ((2 × 6):12),  ((6 × 2):12),  ((3 × 4):12),  ((4 × 3):12), 
all are instances of the relation natural-number-equality and as such are talking about the same
unit entities in denominator and numerator.  
       12 stands in the relation (...is greater than...) to 11 positive integers. It stands in the relation
(...is less than...) to an infinity of positive integers (We don’t say “an infinite number of” since
there are no infinite natural numbers). But we can identify as many true individual cases of  “12
is less than the natural number,...” as we wish. 
       Two ratios are the same (natural-number-equal) just in case the numerators are (natural-

number-)equal and the denominators are (natural-number-)equal. The ratios (a:b) and (c:d) are 
proportionately equal, if and only if  (a × d) is (natural-number-) equal to (b × c)..Thus,

((2 × 3): 7) = (6:(3+4)) and  (6:7) = ((56-8):(7× 9)). Two ratios are identical if and only thep

numerators are identical and the denominators are identical. If numerators (denominators) are
synoymous they are identical numerators (the denotations are identical) although the definiens
and definiendum are not identical (they are never identical in significant synonymies).
============1/10/04====>
Compare to metric system, based n decimal system: 10 cents = 1 dime; 10 dimes = $1.
Old English:  4 farthings= 1 penny, 12 pennies = 1 shilling 20 shillings = 1 pound
                     1 pound = 20 shillings = 240 pennies = 960 farthings
                                         1 shilling =   12 pennies = 48 farthings
                                                                 1 penny = 4 farthings

==================note, 5/30/03 ===>

The parenthetical notation for numbers displays numbers, as the arabic numerals do not.  This is

one dimensional display. In two dimensions, circles would replace pairs of parentheses, and
enclosure structures would be circles inside circles with the smallest circles inside any given

circles being unit circles. If all unit circles had the same size that would help clarify, but this is

not necessarily the case. In three dimensions all enclosure structures would be spheres
(transparent ones?) Again the smallest spheres inside any given sphere would be unit spheres,
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  (I don’t want the following definition of  wfps (well-formed parenthetical structure) 3

   Because it leads to 7)  ‘(()(()()))’ is a wfps, which confuses sum & produce structures. 
                    (i) ‘()’ is a wfps
                    (ii)  if â is a wfps then [(â)] is a wfps 
                   (iii)  if   [(â)] is a wfps & [(ã)] is a wfps, then [(âã)] is a wfps
Thus  1)  ‘()’ is a wfps                                       [Df ‘Wfps’, Clause (i)
         2)   ‘(())’ is a wfps                                     [ Df ‘Wfps’, Clause(ii),1] 
         3)   ‘(())’ is a wfps                                     [Df ‘Wfps’, Clause(ii),1)]
         4)    (‘(())’ is a wfps & ‘(())’ is a wfps)    [Adj, 2),3)]
         5)   ‘(()())’ is a wfps                                  [Df ‘Wfps’, Clause(iii),4)]
         6)   ‘((()()))’ is a wfps                               [Df ‘Wfps’, Clause(ii),5)] 
         7)  ‘(()(()()))’ is a wfps                              [Df ‘Wfps’, Clause(iii), 3) and 6)]

The method above does not allow this kind of PS   7) “‘(()(()()))’ is a wfps”. 

i.e., unit spheres  would be the spheres without anything inside them.  In time some sphere-
structures persist over time unchanged while other sphere-structures  disappear or come into

being.  The concept of space involves the concept of fixed sphere-structures (don’t come into

being or disappear) at any given “instant” or in any case, no change unless time is brought in.

 Finally in 3-dimentional topology the shapes and sizes are not fixed, only the relationship
of shapes (bounded 3-D entities) as being inside or outside each other, and  as varying in terms of

how many (PI) shapes are taken to be  immediately inside another, are relevant. All two
dimensionsal, three dimensional, and topologically three dimensional parathesis-, circle-, sphere-
or (topological) region-structures can be put into one-one correspondence with the parenthetical

displaying of positive integers and numbers.

=============================================
What is the advantage of defining numbers in terms of certain kinds of groupings of

parentheses? It gives an intuitive meaning to the operations of adding, multiplying and raising to
powers.  One can inspect the parenthetic expressions and prove from the meanings of ‘plus’ and,

‘times’, and ‘equals’.... rather than postulate...
=========3

2.23 The theory of well-formed parenthetical structures.(Structures of compound numbers)

     2,231 Positive Iintegers

The theory of well-formed parenthetical structures. (I.e., signs composed of pairs of parentheses)
 a) Df’ ‘PI’  (i) ‘(())’ is a wfPI                           (‘wfPI’ for ‘a well-formed Postive Integer’)
                  (ii)  if  [(â)] is a wfPI & [(ã)] is a wfPI, then [(âã)] is a wfPI
Thus 1)   ‘(())’ is a wfPI                                   [ Df ‘WfPI’, Clause(i)] 
         2)   ‘(())’ is a wfPI                                   [Df ‘WfPI’, Clause(i)]
         3)    (‘(())’ is a wfPI & ‘(())’ is a wfPI)    [Adj, 1),2)]
         4)   ‘(()())’ is a wfPI                                [Df ‘WfPI’, Clause(ii1),3)]
         5)   ‘(())’ is a wfPI &  ‘(()())’ is a wfPI    [Adj, 2),4)]
         6)   ‘(()()())’ is a wfPI                              [Df ‘WfPI’, Clause(ii),2)]
         7)   ‘(())’ is a wfPI & ‘(()()())’ is a wfPI   [Adj, 2),6)] 
         8)   ‘(()()()())’ is a wfPI                            [Df ‘WfPI’, Clause(ii),7)]
         9)   ‘(()()))’ is a wfPI &  ‘(()()())’ is a wfPI [Adj, 4),6)]
        10)  ‘(()()()())’ is a wfPI                            [Df ‘WfPI, Clause(ii), 9)]
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b) Naming Positive Integers directly

       Df ‘1’:             ‘1’ Syn  ‘(())’df

       Df ‘2’:             ‘2’ Syn  ‘(()())’df

       Df ‘3’:             ‘3’ Syn  ‘(()()())’df

       Df ‘4’:             ‘4’ Syn  ‘(()()()())’df

       Df ‘5’:             ‘5’ Syn  ‘(()()()()())’df

       Df ‘6’:             ‘6’ Syn  ‘(()()()()()())’df

       Df ‘7’:             ‘7’ Syn  ‘(()()()()()()())’   df

       Df ‘8’:             ‘8’ Syn  ‘(()()()()()()()())’df

       Df ‘9’:             ‘9’ Syn  ‘(()()()()()()()()())’df

       Df ‘X’:        ‘Ten’ Syn  ‘(()()()()()()()()()())’df

       Df ‘XI’:   ‘Eleven’ Syn  ‘(()()()()()()()()()()())’df

       Df ‘XII’: ‘Twelve’ Syn  ‘(()()()()()()()()()()()())’df

     Etc,

  A single sign, declared to be the direct name of some Pos Int, qua sign, is called a digit.

 

 2,232 Positive Numbers
 

    Df. ‘Nn’ (‘Nu’ for “number”)
         (i) If  â is a wfPI  then â is a wfNu 
         (ii) If  â is a wfNu, then [(â)] is a wfNu 
         (iii) If  â is a wfNu &  ã is a wfNu, then [(âã)] is a wfNu 

Thus 11)   ‘(())’ is a wfNu                                           [Df ‘WfNu’, Clause(i)] 
         12)   ‘(())’ is a wfNu                                           [Df ‘WfNu’, Clause(i)]
         13)    (‘(())’ is a wfNu & ‘(())’ is a wfNu)           [Adj, 11),12)]
         14)   ‘((()))’ is a wfNu                                        [Df ‘WfNu’, Clause(ii),2)]
         15)   ‘((())(()))’ is a wfNu                                   [Df ‘WfNu’, Clause(iii),13)]
         16)   ‘(())’ is a wfNu &  ‘(()())’ is a wfNu           [Adj, 2),4)]
         17)   ‘((())(()()))’ is a wfNu                                [Df ‘WfNu’, Clause(iii),16)]
         18)   ‘(())’ is a wfNu & ‘(()()())’ is a wfNu         [Adj, 2),6)]
         19)   ‘((())(()()()))’ is a wfNu                              [Df ‘WfNu’, Clause(ii),18)]
         20)   ‘(()()))’ is a wfNu &  ‘(()()())’ is a wfNu    [Adj, 4),6)]
         21)   ‘((()())(()()()))’ is a wfNu                          [Df ‘WfNu’, Clause(ii),20)]

I think there is no way to get (()(x))) or ((x)()()()()) etc., where ‘(x)’ is a PI or Nu

Df.   [((â) + (ã))]  for  [((â)(ã))] 
Df    [((()) x (()))]  for  [((())))] 
Df    [((â) x (ã))]  for  [((â)(ã))] ??
==============

2.31.  Numerals as Parenthetic Symbols

The class of pure parenthetical expressions which we shall use to denote simple numbers,

or positive integers, then will be simply the class of 1-level parenthetical expressions:



41

(( )), (( ) ( )), (( ) ( ) ( )), (( ) ( ) ( ) ( )), (( ) ( ) ( ) ( ) ( )), (( ) ( ) ( ) ( ) ( ) ( )),  etc., 
From now one, for convenience and perceptual clarity we shall abbreviate every 0-level

expression, ‘( )’, by the sign ‘o’.  [Note that this does not signify zero; it is just an abbreviation of

an elementary parenthetical expression].  Thus the sequence above becomes, by abbreviation,

(o), (oo), (ooo), (oooo), (ooooo, (oooooo), etc.  
and as might be expected we shall interpret these symbols in such a way that they may be said to

have the same meanings or referents as the ordinary numerals ‘1', ‘2', ‘3', ‘4', ‘5', ‘6', . . .etc.,

respectively.  Letting ‘syn’ abbreviate ‘is synonymous with’ we may express this as:

‘(o)’ syn ‘1'
‘(oo)’ syn ‘2'
‘(ooo)’ syn ‘3'

etc... 

However, it should be noted that the left hand expression in all such cases is ideographic with

respect to its denotation on our theory, whereas the right hand expression is not.  This much, of

course, could also be said of the expressions ‘h ab.a(a(ab)); ‘S(S(S(0)))’ or ‘0’, which are used in

other formalizations of arithmetic as synonymous with ‘3’; though there are differences in the
purity of the correlations between sign and denotatum, and in our opinion parenthetical notation

is isomorphic to its denotatum in more ways than any of the others.

Using the word ‘numeral’ for any expression in a syntactical system which is intended to
denote a number (as we are using ‘number’) we may now distinguish simple numerals (for

positive integers) from compound numerals, and define the former recursively as follows:

D1. ‘x is a simple numeral’ syn ‘(either x is ‘(( ))’ or 
 x is [(y ( ))] and [y]  is a simple numeral)’

From this it follows that all and only 1-level parenthetical expressions will be simple numerals,

(standing for positive integers) in the primitive notation of our system.  Having defined simple

numerals, we may define numerals in general as follows:

D2 ‘x is a numeral’ syn ‘Either (i) x is a simple numeral
                          or (ii) x is a result of replacing each occurrence

                                               of ‘( )’ in some numeral y, by another numeral.’

Clause (ii) may be made the definition of a compound numeral:

D3. ‘x is a compound numeral’ syn ‘x is a result of replacing each occurrence

of ‘( )’ in some numeral y, by another numeral.

From this definition it follows that

T2. If x is a numeral, then [(x)] is a numeral.

Proof:     1) ‘(o)’ is a numeral [by D1]
   2)  let x be a numeral [Assumption]
   3)  [(x)] is a result of replacing
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an occurrence of ‘o’ in ‘(o)’
by a numeral x [inspection, and 2]

   4)  [(x)] is a numeral [ 3), D3]
   5)  T2 [2) - 4),conditional proof]

T3. If x is a numeral and y is a numeral, then [xy] is a numeral.

Proof:  1) similar, except step 1) is: ‘(oo)’ is a numeral.

These theorems however, do not exhaust the ways in which new numerals are constructed; not
only could there be a theorem of the same sort as T2 and T3 for every other simple numeral (or

positive integer); each new numeral thus construed will have a finite set of ‘o’s all of which may

be replaced. [(by D2, (ii)’ by numerals; and these in turn are subject to the same process, etc..  It
will remain the case that simple numerals (denoting positive integers) are all and only the 1-level
numerals, and compound numerals (denoting positive integers) are all and only the 1-level
numerals, and compound numerals (denoting compound numbers) are all and only numerals of

2  and higher levels.  Thus the compound numerals will include, among others,nd

      ((o)),(((o))),((((o)))),. . .     [By iterated use of T2 

I     ((oo)),(((oo))),((((oo)))),. . .     on ‘(o)’ and

      ((ooo)),(((ooo))),((((ooo)))),. . .     ‘(ooo)’]

      ((o) (o)), ((oo) (o)), ((o) (oo)), ((ooo) (o)),. . .                    [By application of T3 to 

II     ((o) (oo)), (o) (ooo)), ((oooo) (o)), ((ooo) (oo)),. . .    pairs of ‘(o)’,‘(oo)’, 

       ((oo) (ooo)), ((o) (oooo)), ((ooooo) (o)),. . .      ‘(ooo)’,(oooo),etc.]      

        (((o) (o))), ((((o) (o)))), (((((o) (o))))),. . .      [By iterated application 

III    (((o) (o))), ((((oo) (o)))), (((((oo) (o))))),. . .                     T2,to members in group II

        (((o) (oo))), ((((o) (oo)))), (((((o) (oo))))),. . .               gotten by T3]

        (((o) (o)) (o)), ((o) ((o) (o))), (((oo) (o)) (o)),,. . . .        [By T3 on pairs with 

IV    (((o) (oo)) (o)), (((o) (o)) (oo)), (((oo), (o)) (o)),. . .       one from Group II and the

        ((o) ((oo) (o))), ((o))), ((o) ((o) (oo))),. . . .                                 other a  simple numeral]

In addition to these expressions, we shall be referring to the following ones later:

        ((ooo) (ooo)) [By T3, ‘(oo)’ for ‘y’, ‘(ooo)’ for ‘z’]
V     ((oo) (oo) (oo)) [By T3,’(ooo)’ for ‘y’, ‘(oo)’ for ‘z’]  

        (((ooo) (oooo)) ((ooo) (oooo))) etc.

        (((ooo) (ooo)) ((oooo) (oooo)))
        (((oo) (oo)) ((oo) (oo)))

2.32 Compound Numerals, Sums and Products

Next, we introduce the sign ‘+’ as follows:

D4.  Provided  [(x)]  and  [(y)]  are numerals, [((x)+(y))]  syn  [((x) (y))] 
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This means, syntactically, that if z is a numeral and ‘)) ((’ occurs in z, it may be replaced by

‘))+((’; or again, that if one numeral is followed immediately by another, within a third, we may

place ‘+’ between the first and the second.  Thus group II of the numerals above, may be re-
written, according to D4, (and remembering that ‘o’ abbreviates ‘( )’) as 

((o)+(o)), ((oo)+(o)), ((o)+(oo)), ((ooo)+(o)), . . . etc.

and then, replacing the simple numerals by their abbreviations, we get for all of group II,

(1+1),  (2+1),  (1+2),  (3+1), . . .

(2+2),  (1+3),  (4+1),  (3+2), . . .

(2+3),  (1+4),  (5+1), . . .

Applying this rule to components of third-level expressions in group IV we get

(((o)+(o))+(o)), ((o)+(o))), (((oo)+(o))+(o)), etc.

So that, with abbreviations for simple numerals we get in Group IV as a whole

((1+1)+1),  (1+(1+1)),  ((2+1)+1), . . .

((1+2)+1),  ((1+1)+2),   (2+(1+1)), . . .

(1+(2+1)),  (1+(1+2)), . . .

All of which are familiar numerical expressions in ordinary language.

Definition D4, however, does not help us to translate expressions in group I into some
ordinary expression, since these expressions, gotten by T2, contain no instances of ‘)) ((’ ,  Since
group III contains expressions gotten by T2 alone in the same way, group III expressions are also

not completely translatable by this convention.  What we need then is another definition.  This one
is related semantically to multiplication and to certain

D5. [x is (y.z)] syn    (i) [x,y, and z are numerals and 
 every n-th level component of x  is an occurrence

                                               of the same n-th level numeral z, and
   (ii)  if every n-th level component of  x is replaced by 

                                              ‘o’ the result is a numeral y.]    

In an expression [(y.z)], y will be said to denote the multiplier and z the multiplicand ( number

which is multiplied).  We shall later show that the laws of commutation and associativity of

multiplication are provable in the form ((x.y) = (y.x)) and (x.(y.z)) = ((x.y.).z)’ because of the

meaning we shall give to ‘=’ But we do not want to say that (y.z.)’ syn ‘(z.y)’, i.e., that ‘(y.z)’

denotes the same number as ‘(z.y)’.  Thus “denotes the same number as” does not mean the same

as ‘=’ in our system, and consequently ‘[(y.z) is the same number as (z.y)] ’will not be a law of our

arithmetic. (This stems from our fundamental departure in the philosophical concept of what a

number is).  Thus the term ‘multiplier’ will always refer to the first term in the expression ‘(y.z)’

and ‘multiplicand’ to the second, and the two terms are not interchangeable.  Our motivation here,
as well as our definition above, may be made clearer by considering the first two expressions in

Group V:

1.  In D5 let s be‘((ooo) (ooo))’: then S is a 2-level numeral and 
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                 (i) every 1-level component of x is an occurrence of
a 1-level numeral z, which is ‘(ooo)’                               

     (ii) if every 1-level component of x  is replaced by ‘o’, the result
is a numeral y,which is ‘(oo)’

    Hence, by (i), (ii) and D5, x is the same as (y.z) or

           ‘((ooo) (ooo))’ syn ‘(2.3)’

         2.  In D5 let x be ‘((oo) (oo) (oo))’: then x is a 2-level numeral and
   (i)  every 1-level component in x is an occurrence of the 1-level
         numeral z, which is ‘(oo)’
  (ii)  if every 1-level component of x is replaced by ‘o’, the result I

                    is a numeral y, which is ‘(ooo)’

Hence, by (o), (ii), and D5, ‘((oo) (oo) (oo))’ syn ‘(3.2)’

Remembering the ideographic aspect of our parenthetical notation, it makes sense to say that there
is a difference between multiplying a group of three things twice, and multiplying a group of two

things three times.  This intuitively clear difference is preserved in the syntactically clear
distinction between the hierarchical structures of ‘((ooo) (ooo))’ and ‘((oo) (oo) (oo))’, and this

difference is further preserved by the convention that ‘(2.3)’ is not synonymous with ‘(3.2)’; they
abbreviate two different syntactical structures, which in turn, on our theory, ideographically

denote different “numbers”.  In general, the left hand component in ‘(y.z)’, the multiplier, denotes
a higher level over-all structure of x, while the right-hand component, the multiplicand, denotes

the structure of all the lower level components of the over-all structure.  Commutatively and

associativity of multiplication will come about through our definition of ‘=’, later.
It is important to remember that in the theory of positive integers D5 does not allow every

number to be a product of two others.  None of the simple numbers, or positive integers, will be

the same as a product of two numbers; for numbers have the grouping properties of numerals, and

simple numerals have just two levels, o-level and 1-level.  It is not the case that every o-level
component, ‘o’, is an occurrence of some numeral z (since ‘o’ is not a numeral at all), and though
every simple numeral is 1-level and thus a numeral, if, by D2, (ii) every 1-level component of a

simple numeral is replaced by ‘o’, the result is just ‘o’ and this again is not a numeral x.  There
will be many other cases of numerals which do not denote products or multiplications in the

theory of positive integers: ‘((oo) (ooo))’ will not, because it is not the case that every 1-level
component of ‘((oo) (ooo))’ is and occurrence of the same 1-level numeral, z, and the o-level and
2-level components are subject to the same objections mentioned with respect to the o and 1-level

components of simple numerals above.  Other numerals may have components which are

products, though not products themselves; e.q., ‘((oo) ((ooo) (ooo) (ooo) (ooo)))’ is not, as a

whole a product, but can be abbreviated as ‘(2+(4.3))’ with its right-hand main component a

product.  Note that numbers which are not products are not necessarily prime numbers.  A prime
number will be defined later as a number which is not equal to any product except itself times

one.  Thus (2+(4.3)) is not a prime number though (2+(4.3)) is not itself a product; it will be

shown later to be equal to (2.7) which is a product, hence it is not a prime number.  On the other

hand, though we shall show that ((oo) (ooo))=(ooooo), i.e., (2+3) = 5, it will also be the case that

(2+3), and 5, can not be shown to be equal to any products other than (1.5) and (5.1), and thus

may be called prime numbers.
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This brings us to the expressions in Groups I and III, which can be translated into familiar

arithmetic language by means of D5, as follows:

3.  In D5 let x be ‘((o))’: then x is a 2-level numeral, and
                 (i) every 1-level component of x is an occurrence of the same 1-level numeral 

z, which is ‘(o)’.
                (ii) the result of replacing every 1-level component of x in x by ‘o’ is a 

numeral y, which is ‘(o)’.

        Hence, by (i) (ii) and D5,‘((o))’ syn ‘((o).(o))’

      Hence, by definition of ‘1',‘((o))’ syn ‘(1.1)’

By similar reasoning, applied not only to the whole, but to components in turn we get the

following translations for the expressions in Group I:

(1.1),  (1.(1.1)),  (1.(1.(1.1))), . . .

(1.2),  (1.(1.2)),  (1.(1.(1.2))), . . .

(1.3),  (1.(1.3)),  (1.(1.(1.3))), . . .

By similar analysis, the expressions in group III are brought into familiar language.

‘(((o) (o)))’syn ‘(1.(2.1))’ ; ‘ ((((o) (o))))’ syn’ (1.(1.(2.1)))’ etc..

and the group as a whole becomes translatable as ...

(1.(2.1)),  (1.(1.(2.1))),  (1.(1.(1.(2.1))), . . .

(1.(2+1)),  (1.(1.(2+1))),  (1.(1.(1.(2+1)))), . . .

(1.(1+2)),   (1.(1.(1+2))),  (1.(1.(1.(1+2)))), . . .

Returning now to the third and fourth expressions in Group V,

‘(((ooo) (oooo)) ((ooo) (oooo)))’ syn ‘(2. (3+4))’ syn ‘((3+4)+(3+4))’

‘(((ooo) (ooo)) ((oooo) (oooo)))’ syn ‘((2.3)+(2.4))’ syn ‘((3+3)+(4+4))’

The difference between these two expressions is clear.  It remains to be shown how we define ‘=’

so that we can prove (2.(3+4))=((2.3)+(2.4)), or more generally, the distributive law of

multiplication over addition, namely (x.(y+z))=((x.y)+(x.z)), of which (2.(3+4))=((2.3)+(2.4)) in

an instance.  The fifth expression in Group V is variously translatable as follows:
 

  ‘(((oo) (oo)) ((oo) (oo)))’ syn ‘((2+2) + (2+2))’ syn ‘(2. (2+2)syn‘((2+2).2'

                     syn ‘((2.2) + (2.2))’ syn ‘(2. (2.2))’syn ‘2 '3

There is a certain naturalness, I believe, in the foregoing accounts of ‘.’ and ‘+’ for

multiplication and addition.  When we think of multiplying one number of things (the
multiplicand) by another (the multiplier), it seems much like thinking of the multiplier as an
organized grouping in which we replace the each zero-level component by the multiplicand, Thus,
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1) If I am considering a package which has 4 apples
         in ((a) (a) (a) (a)) each package                              [multiplicand]
2)  and I decide to buy 3 of these packages  (( ) ( ) ( ))     [multiplier]
3) then what I decide to buy can be represented by replacing each 0-level

    component of the multiplier by the multiplicand:

(((a) (a) (a) (a))  ((a) (a) (a) (a))  ((a) (a) (a) (a)))

But our definition handles not only simple cases like that above in which both multiplier and
multiplicand are simple numbers (positive integers) but also cases where both are compound

numbers, e.g., (1+2) and (3+4).  Thus suppose I want to buy seven metal signs, m, each sign

having two screws, s, accompanying it, i.e., I want to buy items of the form ‘((m) ((s) (s)))’-the

multiplicand.  But it turns out that one store has only three -  (ooo) - of these items and another

has just four - (oooo), then what I want is (((ooo)+(oooo)) . ((m)+(s))) or ((3+4) . (1+2)), or

(3 . (1+2))+4 (4.1(1+2)).  This, however, by our rules, is simply an abbreviation of the following

(using ‘(m(ss))’ for ‘((m)+((s)+(s)))’):

Multiplier.multiplicand: (((ooo) (oooo)) . (m(ss)))
or

((((m(ss)) (m(ss)) (m(ss)))     ((m(ss)) (m(ss)) (m(ss)) (m(ss))))
                                      (a store 1)                            (at store 2)
In general, I believe the concepts of multiplication and addition suggested ideographically by our
parenthetical notation for numerals is more natural and closer to ordinary intuitive understandings

of elementary numbers and arithmetic than any other alternative with which I am familiar.

A full account of the notation for exponentiation, ‘x ’ must await a fuller discussion of ‘=’. y

Although it might appear that we could define ‘x ' as ‘(x.(x.(x.x)))’, and ‘x ' as ‘(x.(x.(x.(x.x)))),4 5

etc., it is not clear how the expression ‘4' and ‘5' would be used in such cases.  According to our

theory ‘4'  syn  ‘(oooo)’ and ‘5' syn ‘(ooooo)’.  In the definition of multiplication there is a clear
sense in which the structure ‘(oooo)’ is embedded in, or analytically part of, the structures of the

expressions abbreviated by ‘(4.5)’ and ‘(5.4)’ (though the role played by ‘4' in each of these cases

is different).  But in an expression like ‘3 ' , or 3 ', there is no place where the numerals ‘4' or ‘5'4 5

are either components, or embedded in the structures, of the numeral denoted.  Thus we shall

defer consideration of how to translate expressions into the notation of exponentiation until later.

2.4 The Adequacy of Parenthetical Notation.

The definitions given above for ‘1', ‘2', ‘3', . . ., ‘+’ and ‘.’ are adequate to permit the

translation of every numeral in parenthetical notation into a familiar arithmetical expression.  This

is clear from the definition, D2 of ‘x is a numeral’.  Clause (i) yields all and only 1-level

expressions; but all of these are translatable into the familiar notation of positive integers, i.e., ‘1',

‘2', ‘3', . . .etc..Clause (ii) yields a new numeral x from an old numeral y, by replacing each

occurrence of ‘o’ in y by some or other old numeral.  But ’o’ can occur in a numeral only in four

ways; ‘..ooo. . .’, ‘...(oo. . .’, ‘...oo). . .’, ‘. . .(o). . .’.  Replacing all occurrences of ‘o’ in any of

these contexts by numerals ‘(x)’ or ‘(y)’ or ‘(z)’ will yield ‘. . .(y) (x) (z). . .’ or ‘. . .((x) (z). . .’, or

‘. . .(y) (x)). . .’ or . . .(x). . .’ but since ‘x’, ‘y’ and ‘z’ will be at least one pair of parentheses,

yielding sequences of ‘)) ((‘ in the first three cases, we get ‘. . .(y)+(x)+(z). . .’, and ‘. . .((x)+(z). .

.’ and ‘. . .(y)+(x)). . .’ in these cases by D4, and ‘. . .(1.(x)). . .’ in the fourth case by D5.  Thus by
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induction it will follow that all numerical expressions in parenthetical notation are translatable

into familiar notation.

It can also be proved easily enough, that all familiar arithmetic expressions which ‘are’

constructible according to the ordinary rules out of numerals for the positive integers, ‘+ ‘.’ , and

parentheses, can be translated back into a unique, purely parenthetical notation of our system. 
Sometimes, to be sure, there are several familiar expressions which will all translate back into the

same parenthetical notation- the same element in the domain of grouping theory.  Thus, since

(2.2) is identical to (2+2),  each of ‘((2+2)+(2+2))’, ‘((2.2)+(2.2),and ‘2 ' are translatable into the3

single, unique parenthetical expression ‘(((( ) ( )) (( ) ( ))) ((( ) ( )) (( ) ( )))).  In these cases we can
say not only that the familiar expressions denote equal numbers, but that they all denote the same

number.  I.e., not only will it turn out that ((2+2)+(2+2))) = (2.(2.2)) but ‘also ‘((2+2)+(2+2))’ syn

‘(2.(2.2))’; remember that while (2.3)=(3.2) it is not the case that ‘(2.3)’ syn (3.2)’;  i.e., the two

don’t denote the same object to our domain.  Once again, this underscores the new interpretation

of ‘=’ in arithmetic as well as a new concept of number.  Another interesting example of the same
point is

‘((((oooo) (ooooo)) ((oooo) (ooooo))) (((oooo) (ooooo)) ((oooo) (ooooo)) ( (oooo) (ooooo))))’

which is translatable into familiar notation by either ‘((2+3) . (4+5) or ‘((2.(4+5))+(3.(4+5))’. 
Thus the two latter terms not only denote equal objects, but they are synonymous, denoting the

same object.  By contrast the following instance of the distributive law, ‘(2.(4+5)=((2.4)+(2.5))’

represents an equality, though ‘(2.(4+5)) and ‘((2.4)+(2.5))’ do not denote the same object in our

domain.

Broadly speaking, then, the relation between the set of familiar expressions built up from

parentheses, ‘+’, ‘.’ and the numerals for positive integers, and the set of numerals in our
parenthetical notation, is a many-one relation, a function from the familiar expressions onto the

parenthetical notation for numerals.

In the next section, after introducing ‘=’ we shall show that parenthetical notation is also
adequate for complete translation into and out of the symbolism which has been used in the
formalizations of a theory of positive integers by mathematical logicans using symbols for the

successor function, the addition function and the multiplication function.  And indeed we shall
examine closely the connection between parenthetical notation and its results and the sub-class of

elementary number-theoretic functions known as general recursive functions.  But first we must

define ‘=’ and other relationships between objects in the domain of elementary number theory.

Our purpose up to this point has been to define a domain of objects, and a set of terms

capable of denoting uniquely each number of this domain.  These objects, we propose, are the

proper objects of the elementary arithmetic of positive integers.  We shall further propose that
only such statements about these objects or about relationships between members of this domain
as are decidable by reference to and analysis of the nature of the objects as defined should be

counted as mathematically true or mathematically false statements.  And we shall show that there
are a variety of formally definable relations between members of this domain, some of which are
recursive relations (having a recursive characteristic function) which are not, on this account,

strictly mathematical or arithmetic relationships.  At this point, of course, we go to the heart of the

issue; whether recursive relations are necessarily mathematical or arithmetical relations. If they
are not, we shall, then Church has not shown that there are arithmetic truths which are
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undecidable even granting his thesis.

2.5 Mathematical Properties and Relations is the domain of Elementary Arithmetic. 

Set theoretical approaches to mathematics proceed from an interpretation of ‘=’ which has

been expressed as follows: “In general, the equality sign is placed between two expressions to
indicate that these expressions are names or descriptions of one and the same object” (Hankin et

al, Retracing Elementary Mathematics, Macmillan, 1962 p 5).  On such a view ‘(2+1)=3' must be
interpreted as saying that all (tokens of the type ‘(2+1)' and all tokens of the type ‘3' refer to name

or describe just one and only one object in the universe.  What is this strange object?  And where

can it be found?  It is neither here nor there, we are told; or it is everywhere.  It fills the universe,

being embedded in the collection of all physical objects; or is a denizen of Plato’s strange heaven. 

It is the class of all classes with just three members; yet none of us have ever seen or apprehended

this class - though we may have seen some of its members.  Why this immense burden on the
imagination?  Is this really necessary to have a viable theory of mathematics?  Mathematicians are

no less finite and human than the rest of us.  Can we not get a theory of mathematics which does

not impose such flights?  Indeed we can.  And to show that this can be done is one purpose of this

paper.  The sign ‘=’ is interpreted in a very ordinary, yet precise way, based on the fact that human

beings, in single moments, can determine particular similarities.  ‘(2+1)’ neither means, nor

denotes, the same object as ‘3', ever.  To say that ‘(2+1)=3' is always and logically true; but true

by virtue of a different meaning of ‘=’ than that just mentioned.

In elementary arithmetic the primary relations we are interested in are those of (i)

arithmetic equality, signified by ‘=’, and (ii) arithmetic inequality, signified by ‘(’.  Both are

binary relations.  If a system of arithmetic is to be complete, then given any two objects x and y, in
the domain, either [x=y] will be true or [x ( y] will be true (an application of the law of excluded

middle).  If it is to be consistent, then no two objects in the domain, x and y, can be such that both

[x = y] and [x ( y] is true.  The primary job of arithmetic is computation - to find numbers which

are equal to certain other compound or simple numbers.  Addition and multiplication tables
summarize such equations in tabular form, and algorithms for multiplying and adding large
numbers or compound numbers have as their terminal goal numbers which are equal to the

products or sums of the initial numbers.  The five fundamental laws of arithmetic are all algebraic

equations:

(x+y)=(y+x) [Commutation of x ]
(x+(y+z))=((x+y)+z) [Association of +]

(x.y)=(y.x) [Commutation of .]

(x.(y.z))=((x.y).z) [Association of .]

(x.(y+z))=((x.y)+(x.z)) [Distribution of . over +]

Further, in elementary arithmetic, given equality and the concepts of functions ‘+’ and ‘.’, we can

define’‘<’, ’>’,  ‘<  ‘, ‘< ’,  ‘. .is the successor of. .’,  ‘. . is a power of . .; ‘. . is a factor of . . ; . . is

divisible by . .; and other relations, as well as such functions as ‘S’ for the successor functions, ‘-’

for the subtraction function and ‘ m’ for the division function, etc., in currently familiar ways. 
Thus we will deal next with the concept of arithmetic equality in our theory, leaving until later a
comparison of this account with the more usual set-theoretic treatments stemming from Frege and

Russell.
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2.51 Equality versus Identity

Two different expressions will be said to denote the same number if and only if they are

synonymous with the same numeral in our parenthetical notation.  We shall use the expression

‘xIy’ to express the notion in ‘x is identical with y’. Or ‘x is exactly the same as y’; in this case, of
course, we are concerned with expressions which assert that some x is the same number, in our

sense of number, as some y.  We shall use ‘I’ as a primitive relation and introduce ‘=’ for

arithmetic equality, by definition.  Actually, ‘I’ is closer to the way ‘=’ has usually been used in

set theory or predicate logic with identity.  But since our purpose is to draw a distinction between
identity (I) and arithmetic equality, (=) and since the sign ‘=’ has been used much longer and more
widely for arithmetic equality than it has for logical or set-theoretical identity, we shall reserve ‘=’

for the defined term, rather for identity itself.  Thus we shall suppose that ‘I’ has been introduced

as a prior logical primitive.  A second relation will be introduced: one number will be said to be
reducible to a second number, if the result of eliminating all intermediate groupings from the first

is identical with the the result of eliminating all intermediate groupings from the  second.  An

intermediate  pair of parentheses is one which is neither the outer most pair nor an inner most pair. 

We will use the symbol ‘xRy’ for ‘x is reducible to y’ in this sense.  Finally, we will say that two

numbers are equal to each other if there is some number both are reducible to, i.e., assuming x,y,

and z range over numbers.

D6. [x=y] syn [(Ez) (xRz,yRz)] 

This definition of arithmetic equality conforms neatly to ways in which elementary arithmetic is

used.  If I buy three packages of four apples each, and someone asks how many apples I bought, I
literally disregard the intermediate groupings (the groupings in packages) and consider only the

elementary objects (the apples) and the over-all grouping, and answer ‘12'.  In short I initially have
something like ((aaaa) (aaaa) (aaaa)), three packages of four apples, and to answer the question, I

disregard the intermediate groupings to get (aaaaaaaaaaaa), and answer twelve.  Thus when I

calculate (3.4)=12, or (4+4+4)=12, I am literally “reducing” ‘((oooo) (oooo) (oooo))’ to
‘(oooooooooooo)’ by dropping out all the intermediate groupings represented by pairs of

parentheses which are neither zero-level nor the top n-th level parentheses in the expression.

It is immediately clear that if we eliminate all intermediate parentheses from any numeral,

what will be left will be a simple numeral representing a positive integer.  Further, for any given

compound numeral, there will be one and only one simple numeral to which it can be reduced; for
the number of zero-level expressions will not be altered in any way by the numbers of

intermediate groupings involved.  Thus the reducibility relation is a many-one relation, or

function; i.e., for any given numeral, simple or compound, there will be one and only one numeral
to which it is reducible, though there will be infinitely many non-identical compound numerals

(numbers) which will be reducible to any given simple numeral (positive integer).  This instead of

saying that compound expressions like ‘(2.(3+4)) is identical with ‘(6.(1+3))’, denote or stand for

the same positive integer, 24, or (oooooooooooooooooooooooo), and thus that (2.(3+4)) is

identical with (6.(1+3)), we say that ‘(2.3+4))’ and ‘(6.(1+3))’ are both reducible to 24, although

24, (2.(3+4)) and (6.(3+1)) are all different numbers, i.e., are non-identical.
The relation of identity will hold between any numeral in parenthetical notation and itself,
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of course.  Thus we may assert

(ooo)I(ooo) 3I3

((oo) ((oo) (oo)))I((oo) ((oo) (oo))) (2+(2.2))I(2+(2.2))

(((oo) (oo))I(((oo) (oo)) (oo)) (oo))            ((2.2)+2)I((2.2).2)
(oooooo)I(oooooo) 6I6

and by virtue of our translations and abbreviations, we may further assert such identities as 

(ooo)I3 2 I((2+2))+(2+2))3

((oo) ((oo) (oo)))I(2+(2.2)) 2 I((2.2)+(2.2))3

(2+(2.2))I(2+(2+2)) (2.(2.2))I(2.(2+2))

for in all of these cases, the different expressions on either side of an ‘I’ stand for or denote the

same number.  But we can not, in our theory, say that (2+(2.2))I6, or even that (2+(2.2)+((2.2)+2),

or (2.3)I(3.2), for in these cases, the two terms do not denote the same structured groupings, even

though they are equal.  Thus identity in our theory preserves groupings and orderings; ordinal
numbers and ordinal identities or differences can be expressed by means of our initial definition

of the domain, and the relation of identity, I.  But elementary arithmetic is cardinal arithmetic, in
which linear orders are disregarded by rules of commutation and hierarchical orders are
disregarded by rules of commutation and hierarchical orders are disregarded by rules of

association.

2.52-Proofs of the Five Fundamental Laws

Since the elimination of all intermediate groupings eliminates any distinctions on which
either linear or heirarchical order could be based, the device of treating arithmetic equality in
cardinal arithmetic as the identity of the reductions of two numbers, yields strict proofs of the five

fundamental laws of cardinal arithmetic.  Eventually we must give a strict definition of proof in

our system; not having done that, we simply give below an example of a simple proof of an

instance of each law.

1.   (n +n ) = (n +n ) [Commutation of ‘+’]1 2 2 1

     Example

  .  a) let n1 be(2+1), let n  be(2.3) Assumption2

     b) (((oo) (o)) ((ooo) (ooo))R(ooooooooo) Def R

     c)             ((2+1)+(2.3)) R (ooooooooo)    b),Df  ‘+’, Df ‘1'.Df ‘2',Df ‘3'.
     d) (((ooo) (ooo)) ((oo) (o))) R (ooooooooo) Def R

     e) ((2.3)+(2+1) R (ooooooooo) d) Df ‘+’ .Df ‘1' .Df ‘2'.Df ‘3'.

     f)  (Ez) (((2+1)+(2.3)+(2.3))Rz . ((2.3)+(2+1))Rz) c) ,e), Simp, EG

     g)  ((2+1)+(2.3))=((2.3)+(2+1)) f) ,def  ‘=’

     h) (n +n )=(n +n ) a),g), sub.1 2 2 1

2.  (n  . n ) = (n . n ) [Commutation of  ‘.’]1 2 2 1

     Example:

     a) let n  be 2 and n  be 3 Assumption1 2
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     b) ((ooo) (ooo))R(oooooo) Def R
     c) ((oo) (oo) (oo))R(oooooo) Def R

     d) (2.3)R(oooooo) b),Df ‘.’ .Df ‘2', Df ‘3'.

     e) (3.2)R(oooooo) c),,Df ‘.’, Df ’2', Df ’3'.

     f) (Ez) ((3.2)Rz . (2.3)Rz d),e), Simp., E.G.

     g) (2.3)=(3.2) f), Def ‘=’.

     h) (n1.n2)=(n2.n1) g), a), sub.

3.  (n +(n +n )) = ((n +n )+n ) [Association of ‘+’]1 2 3 1 2 3

     Example:

     a) let n  be ‘2', n , be ‘3', n , be ‘1' Assumption1 2 3

     b) ((oo) ((ooo) (o)))R(oooooo) Def R
     c) (((oo) (ooo)) (o))R(oooooo) Def R

     d) (2+(3+1)R(oooooo) b), Df ‘+’, Df ‘1', Df’2', Df’‘3'.

     e) ((2+3)+1)R(oooooo) c), Df ‘+’, Df ‘1', Df ‘2',Df’‘3'.

     f) (Ez) ((2+(3+1))Rz . ((2+3)+1)Rz) d),e), Simp. &E.G.

     g) (2+(3+1)=((2+3)+1) f), df ‘=’
     h) (n +(n +n ' ) = ((n +n )+n ) g),a), sub1 2 3 1 2 3

4.  (n . (n . n )) = ((n  . n .n ) [Association of ‘.’]1 2 3 1 2 3

     Example:

     a) Let n  be ‘2', n  be ‘3', n  be ‘1'  Assumption1 2 3

     b) ((((o) (o) (o)) ((o) (o) (o)))R(oooooo) Def R
     c)  ((((o) (o) (o)) ((o) (o) (o)))R(oooooo) Def R

     d) (2.(3.1))R(oooooo) b), Df  ‘.’, Df ‘2', Df ‘3', Df ‘1' 

     e) ((2.3).1)R(oooooo) c), Df  ‘.’, Df ‘2', Df ‘3', Df ‘1'.

     f) (Ez) ((2.(3.1))Rx . ((2.3).1)Rz) d), e), Simp., E.G...

     g) (2.(3.1))=((2.3).1 f), Df ‘=’

     h) (n  . (n .n ))=((n .n ).n )) g), a), sub.1 2 3 1 2 3

(Actually, it can be proven that (n1.(n2.n3))I(n1.n2).n3); but since it can also be proven that (x)

(y) (xIy ; x=y), 4 will follow from that fact as well as the sort of proof suggested above.  None of

the others of these five laws is also an identity.).

5.  (n .(n +n )) = (n .n )+(n .n )) (Distribution of ‘.’ over ‘+’]1 2 3 1 2 1 3

     Example:

     a) Let n  be ‘2', n  be ‘3' and n  be ‘1' Assumption1 2 3

     b) (((ooo) (o)) ((ooo) (o))R(oooooooo) Def R
     c) (((ooo) (ooo)) ((o) (o))R(oooooooo) Def R

     d) (2.(3+1))R(oooooooo) b), Df ‘.’, Df ‘+’, Dfs ‘2', ‘3', ‘1'.

     e) ((2.3)+(2.1))R(oooooooo) c), Df ‘.’, Df ‘+’, Dfs “2', ‘3', ‘1'.

     f) (Ez) ((2.(3+1))Rz . ((2.3)+(2.1))Rz) d), e), Simp., E.G.

     g) (2.(3+1))=((2.3)+(2.1)) f), Df ‘=’

     h)  (n .(n +n ))=((n .n )+(n .n )) g), a), sub.1 2 3 1 2 1 3
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Although these do not, of course, give general proofs of these laws, they indicate pretty clearly

how such proofs can be gotten.  We have used only the simplest, smallest positive integers.  But
since every substituent for ‘n  ‘ will be reducible to a positive integer in steps b) and c) of these1

proofs, the general proof will follow if we can show that the laws hold for every set of positive

integers n , n  and n .  But surely this is possible, especially if we develop an appropriate principle1 2 3

of induction.

A principle of induction becomes possible with the definition of the successor relation:

D7. [xSy]   syn  [x = (y+1)]  

Given any numeral n ,  [(n +(o))]  will be its successor.  On this definition, clearly the successor1 1

of, e.g., 4, or (oooo), will not be identical with 5, or ‘(ooooo)’, but instead will be identical with

(4+1) or ((oooo) (o)); nevertheless, the successor of 4, i.e., ((oooo) (o)), will be equal to 5.  I.e.,

letting ‘S ‘4' mean ‘the successor of 4', it is not the case that S’4 I 5, but it is the case that S ‘4=5. 

We could, of course, have defined the successor relation so as to make it hold only of positive
integers [by [xSy]  syn  [x is PI and (Ez)(yI’(z)’ and xI=(zo)’ ]   ‘or by using the second clause of

D1; [xS(y)]  syn  [(y)] is a PI . x I [  [(y ( )))] ] ].  But this would eliminate successors of any
compound numbers, and the latter concept plays an important role in the axiomatization of

arithmetic.  We could have two kinds of successor, one for positive integers and one for

compound numbers; but this seems unnecessarily complex.  The definition above will serve, I
think, all purposes needed, and due to our definition of ‘=’, we can get the law that (x) (y)

((xePI.ySx);  yIS’x), even though we don’t get (x) (y) ((xePI . ySx) ; yIS’x).
Returning now to Peano’s postulates for elementary arithmetic, all of his first eight axioms

will be derivable from our definitions of numbers (the ideographic denotata of numerals as
defined in parenthetical notation above), of ‘1', of ‘+’, and of ‘=’, together with principles drawn

from predicate logic with identity.  His axioms 2,3,4, and 5 simply apply to numbers the following

principles of identity in logic:

2.  (x) (xIx)

3.  (x) (y) (xIy o yIx)

4.  (x) (y) (z) ((xIy.yIz) ; xIz)

5.  (x) (y) (z) ((xIy . y is an N) ; x is an N)

His first postulate,

1.  1 is an N

translated into our system, says simply that (o) is an number, and since ‘(o)’ is a numeral, and the
class of numerals, on our account, stand in one-to-one correspondence with the class of
(elementary) numbers, our account satisfies 

P1.  The postulate P6, says that if any entity is a number then its successor is a number:

P6.  (x) (x is an N ; (x+1) is an N)

Proof: 1) x is an N Assumption

2) (oo) is an N Def. 1
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3) (x(o)) is an N 1, 2, n of 2 clause (ii)
4) (x+1) is an N  Df ‘1' Df   ‘+’ 

5) If x is an N then (x+1) is an N (2-4) C.P.

and this certainly will follow also from our definition of numerals and T2.  Postulate P7 says that

successors of equal numbers are equal.

P7.  (x) (y) ((x is an N and y is an N); (x=y o ((x+1)=(y+1)))

and this also is subject to a quick and easy proof.  For if x and y are equal, then they reduce to the

same positive integer (by the definition of ‘R’ and ‘=’; the successor of each of these will be
denoted by a parenthetical expression which adds only one more zero-level expression, so that
when the intermediate parentheses are eliminated both will again reduce to the same positive

integer, i.e., the integer which is equal to the successor of the integer they both reduced to in the

antecedent. Actually, this postulate will need a principle of induction for its derivation.  Postulate

P8 says simply that 1 is not equal to the successor of any (elementary) number:

P8.  (x) (x is an N ; ((x+1) ( 1))

And this, also, is perfectly obvious in terms of our definitions of ‘N’, ‘1' and ‘=’; (o) is not equal

to any [(n(o))]  where n is a number.  The final postulate, is in effect the principle of mathematical

induction:

P8.  (x) (x is G ; x is an N) . 1 is G .  (x)((x is an N . x is G); (x+1) is G));

6 (x) (x is an N ; x is G).

Although this principle will be a meta-theorem of our system, it is not adequate as a postulate of
the system due to the fact that we have not defined numbers in our system solely in terms of the

successor function.  Definitions D1 and D2 do not yield a linear (or strict simple) ordering as the

successor relation does in Peano’s definition of N based on P6.  For clause (ii) of D2 allows an
indefinite number of results of performing the operation of “replacing each occurrence of ‘0' in a

given numeral by some or other numeral”.  Thus this mode of generating the numbers gives at

best a partial ordering.  Nevertheless, it is possible to find an alternative to P9 which is stronger,

and from which P9 may be deduced.  Thus we may conclude that given our definition of the3

relation, as an
 

 1 Cf. For example, Kleene, Stephen Cole Introduction to Metamathematics, 1952 s 50, in which3  

he indicates how to formulate an appropriate principle of induction for the system of Hans
Hermes’ “Semiotik Eine Theorie der Zeichengestalten als Grundlage für Untersuchungen von
formalisierten Sprachen”, Forschungen zur Logik und zur Grundlegung der exakten

Wissenschaften, n.s., No. 5, Leipzig, 1938.  Hermes definition of ‘entity’, like our definition of
number, involves parenthetic enclosure of any finite series of entities previously established, and

thus yields only partial ordering.

operation on compound groupings and the consequent definition using logical identity, I, and
predicate logic of ‘=’, our theory of elementary arithmetic will conform to the requirements of
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Peano arithmetic, and thus constitute a viable theory of the arithmetic of positive integers.

We could go further and define other functions - the subtraction function, the division

function, - and relations like greater than, less than, etc., in familiar ways with the concepts at

hand.  More ambitiously, we could present a formal axiomatized system, and set about proving

this system complete with respect to Peano Arithmetic.  However, these tasks are not relevant to

our present purpose.  Our purpose thus far has been merely 1) to define a domain of objects,
called elementary numbers (which may be called a sub-class of the class of organized groupings),
2) to give an inductive definition of a specific set of linguistic expressions to be built up from
parentheses ‘(’ and ‘)’ and called ‘numerals’, 3) to propose that all and only those organized
groupings which correspond ideographically one-to-one to these numerals constitute the exact

domain of objects that elementary arithmetic is about, and 4) to propose that the relations: and
function based on the elimination of all intermediate groups, Rxy, (as distinct from the successor
function) together with logical identity and predicate logic, may be adequate for all the relations,

beginning with arithmetic equality, ‘=’ needed in elementary arithmetic.  This we will examine in

the next section.  Our final step is to show, if that this much as been granted, then it is possible to
define in a very clear way the difference between mathematical relation and certain kinds of

relations between numbers or sets of numbers which are contingent and non-mathematical.

=============================

For Digresssion on geometry and mathematics after my account of roots and trigonometric

functions

In Euclidean plane geometry we can specify by rules of construction, that if we specify
that certain given straight line segments.are to be taken as having a unit length of 1, we can
provide a method for constructing in theory precise point on a straight line that is the square root
of any positive integer. We can do this by constructing right tirangles and using the Pythagorean
theorem..
                             Construct a rt triangle with sides a and b, and hypotenuse h.
   To Construct    Side a,     Side b    Hypoteneuse
       @ 2                  1       +       1            =    (@ 2 )
       @ 3                  1       +     (@ 3 )       =        2 
       @ 4               @ 2      +      @ 2          =    (@ 4 )          
       @ 5                  1       +     (@ 5 )       =        2   
       @ 6               @ 3      +      @ 3          =    (@ 6 )     
       @ 7               @ 4      +      @ 3          =      @ 7  
       @ 8               @ 4      +      @ 4          =      @ 8  
       @ 9               @ 6      +      @ 3          =      @ 9  
       @10               @ 5      +      @ 5         =      @10               
Trigonometric functions, also historically came from PythagoreannTheorem on Euclid’s 
Geometry, x2.  But while geometrical squares are on the sides of the rigth triangle are proven
to be equal in area precisely. The most of the mathematical relations can never be reduced to a
rational numbers. The idea that there are “real numbers” for each of these is a fantasy. There are
no such numbers - only proximation functions. And they are completely separate from plain
geometry. The trigonometric functions are also applicable to the relations between diameters and
circles in spherical, or eelliptic geometry, where the Pythagorean Theorem does not apply (except
as a limit)
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